QCFiltered.data dataset was generated following this QC steps
Cell cycle score was assigned following the Seurat v2.4 Cell-Cycle Scoring vignette
# Assign cell-cycle scores based on Tirosh et al, 2015 gene list
s.genes <- c("Mcm5", "Pcna", "Tym5", "Fen1", "Mcm2", "Mcm4", "Rrm1", "Ung", "Gins2", "Mcm6", "Cdca7", "Dtl", "Prim1", "Uhrf1", "Mlf1ip", "Hells", "Rfc2", "Rap2", "Nasp", "Rad51ap1", "Gmnn", "Wdr76", "Slbp", "Ccne2", "Ubr7", "Pold3", "Msh2", "Atad2", "Rad51", "Rrm2", "Cdc45", "Cdc6", "Exo1", "Tipin", "Dscc1", "Blm", " Casp8ap2", "Usp1", "Clspn", "Pola1", "Chaf1b", "Brip1", "E2f8")
g2m.genes <- c("Hmgb2", "Ddk1","Nusap1", "Ube2c", "Birc5", "Tpx2", "Top2a", "Ndc80", "Cks2", "Nuf2", "Cks1b", "Mki67", "Tmpo", " Cenpk", "Tacc3", "Fam64a", "Smc4", "Ccnb2", "Ckap2l", "Ckap2", "Aurkb", "Bub1", "Kif11", "Anp32e", "Tubb4b", "Gtse1", "kif20b", "Hjurp", "Cdca3", "Hn1", "Cdc20", "Ttk", "Cdc25c", "kif2c", "Rangap1", "Ncapd2", "Dlgap5", "Cdca2", "Cdca8", "Ect2", "Kif23", "Hmmr", "Aurka", "Psrc1", "Anln", "Lbr", "Ckap5", "Cenpe", "Ctcf", "Nek2", "G2e3", "Gas2l3", "Cbx5", "Cenpa")
QCFiltered.data <- CellCycleScoring(object = QCFiltered.data,
s.genes = s.genes,
g2m.genes = g2m.genes,
set.ident = F)
DimPlot(QCFiltered.data,
reduction.use = "spring",
group.by = "Phase",
cols.use = wes_palette("GrandBudapest1", 3, type = "discrete")[3:1],
dim.1 = 1,
dim.2 = 2,
do.label=T,
label.size = 4,
no.legend = F )
FeaturePlot(object = QCFiltered.data,
features.plot = c("Nes", "Sox2", "Tbr1", "Slc17a6", "Gad2", "Dlx5"),
cols.use = c("grey90", brewer.pal(9,"YlGnBu")),
reduction.use = "spring",
no.legend = T,
overlay = F,
dark.theme = F)
We assigned broad transcriptional cell state score based on known and manually curated marker genes
APgenes <- c("Rgcc", "Sparc", "Hes5","Hes1", "Slc1a3",
"Ddah1", "Ldha", "Hmga2","Sfrp1", "Id4",
"Creb5", "Ptn", "Lpar1", "Rcn1","Zfp36l1",
"Sox9", "Sox2", "Nr2e1", "Ttyh1", "Trip6")
genes.list <- list(APgenes)
enrich.name <- "AP_signature"
QCFiltered.data <- AddModuleScore(QCFiltered.data,
genes.list = genes.list,
genes.pool = NULL,
n.bin = 5,
seed.use = 1,
ctrl.size = length(genes.list),
use.k = FALSE,
enrich.name = enrich.name,
random.seed = 1)
FeaturePlot(object = QCFiltered.data,
features.plot = APgenes,
cols.use = wes_palette("Zissou1", 8, type = "continuous"),
pt.size = 0.8,
reduction.use = "spring",
no.legend = T,
overlay = F,
dark.theme = F
)
BPgenes <- c("Eomes", "Igsf8", "Insm1", "Elavl2", "Elavl4",
"Hes6","Gadd45g", "Neurog2", "Btg2", "Neurog1")
genes.list <- list(BPgenes)
enrich.name <- "BP_signature"
QCFiltered.data <- AddModuleScore(QCFiltered.data,
genes.list = genes.list,
genes.pool = NULL,
n.bin = 5,
seed.use = 1,
ctrl.size = length(genes.list),
use.k = FALSE,
enrich.name = enrich.name,
random.seed = 1)
FeaturePlot(object = QCFiltered.data,
features.plot = BPgenes,
cols.use = wes_palette("Zissou1", 8, type = "continuous"),
pt.size = 0.8,
reduction.use = "spring",
no.legend = T,
overlay = F,
dark.theme = F
)
ENgenes <- c("Mfap4", "Nhlh2", "Nhlh1", "Ppp1r14a", "Nav1",
"Neurod1", "Sorl1", "Svip", "Cxcl12", "Tenm4",
"Dll3", "Rgmb", "Cntn2", "Vat1")
genes.list <- list(ENgenes)
enrich.name <- "EN_signature"
QCFiltered.data <- AddModuleScore(QCFiltered.data,
genes.list = genes.list,
genes.pool = NULL,
n.bin = 5,
seed.use = 1,
ctrl.size = length(genes.list),
use.k = FALSE,
enrich.name = enrich.name,
random.seed = 1)
FeaturePlot(object = QCFiltered.data,
features.plot = ENgenes,
cols.use = wes_palette("Zissou1", 8, type = "continuous"),
pt.size = 0.8,
reduction.use = "spring",
no.legend = T,
overlay = F,
dark.theme = F
)
LNgenes <- c("Snhg11", "Pcsk1n", "Mapt", "Ina", "Stmn4",
"Gap43", "Tubb2a", "Ly6h","Ptprd", "Mef2c")
genes.list <- list(LNgenes)
enrich.name <- "LN_signature"
QCFiltered.data <- AddModuleScore(QCFiltered.data,
genes.list = genes.list,
genes.pool = NULL,
n.bin = 5,
seed.use = 1,
ctrl.size = length(genes.list),
use.k = FALSE,
enrich.name = enrich.name,
random.seed = 1)
FeaturePlot(object = QCFiltered.data,
features.plot = LNgenes,
cols.use = wes_palette("Zissou1", 8, type = "continuous"),
pt.size = 0.8,
reduction.use = "spring",
no.legend = T,
overlay = F,
dark.theme = F
)
SPgenes <- c("Gad2", "Dlx6", "Slc32a1", "Nrxn3","Dlx5")
genes.list <- list(SPgenes)
enrich.name <- "SP_signature"
QCFiltered.data <- AddModuleScore(QCFiltered.data,
genes.list = genes.list,
genes.pool = NULL,
n.bin = 5,
seed.use = 1,
ctrl.size = length(genes.list),
use.k = FALSE,
enrich.name = enrich.name,
random.seed = 1)
FeaturePlot(object = QCFiltered.data,
features.plot = SPgenes,
cols.use = wes_palette("Zissou1", 8, type = "continuous"),
pt.size = 0.8,
reduction.use = "spring",
no.legend = T,
overlay = F,
dark.theme = F
)
Palgenes <- c("Tmem163", "Ptprd", "Tbr1", "Wnt7b", "Nrn1", "Slc17a6")
genes.list <- list(Palgenes)
enrich.name <- "Pal_signature"
QCFiltered.data <- AddModuleScore(QCFiltered.data,
genes.list = genes.list,
genes.pool = NULL,
n.bin = 5,
seed.use = 1,
ctrl.size = length(genes.list),
use.k = FALSE,
enrich.name = enrich.name,
random.seed = 1)
FeaturePlot(object = QCFiltered.data,
features.plot = Palgenes,
cols.use = wes_palette("Zissou1", 8, type = "continuous"),
pt.size = 0.8,
reduction.use = "spring",
no.legend = T,
overlay = F,
dark.theme = F
)
FeaturePlot(object = QCFiltered.data,
features.plot = c("AP_signature1", "BP_signature1", "EN_signature1",
"LN_signature1", "Pal_signature1", "SP_signature1"),
cols.use = rev(brewer.pal(10,"Spectral")),
reduction.use = "spring",
no.legend = T,
overlay = F,
dark.theme = F
)
## [1] "30 novembre, 2020, 10,28"
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
## LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
##
## locale:
## [1] LC_CTYPE=fr_FR.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=fr_FR.UTF-8 LC_COLLATE=fr_FR.UTF-8
## [5] LC_MONETARY=fr_FR.UTF-8 LC_MESSAGES=fr_FR.UTF-8
## [7] LC_PAPER=fr_FR.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] wesanderson_0.3.6 RColorBrewer_1.1-2 Seurat_2.3.4 Matrix_1.2-17
## [5] cowplot_1.0.0 ggplot2_3.2.1
##
## loaded via a namespace (and not attached):
## [1] Rtsne_0.15 colorspace_1.4-1 class_7.3-17
## [4] modeltools_0.2-22 ggridges_0.5.1 mclust_5.4.5
## [7] htmlTable_1.13.2 base64enc_0.1-3 rstudioapi_0.11
## [10] proxy_0.4-23 farver_2.0.1 npsurv_0.4-0
## [13] flexmix_2.3-15 bit64_4.0.2 codetools_0.2-16
## [16] splines_3.6.3 R.methodsS3_1.7.1 lsei_1.2-0
## [19] robustbase_0.93-5 knitr_1.26 zeallot_0.1.0
## [22] jsonlite_1.7.0 Formula_1.2-3 ica_1.0-2
## [25] cluster_2.1.0 kernlab_0.9-29 png_0.1-7
## [28] R.oo_1.23.0 compiler_3.6.3 httr_1.4.1
## [31] backports_1.1.5 assertthat_0.2.1 lazyeval_0.2.2
## [34] lars_1.2 acepack_1.4.1 htmltools_0.5.0
## [37] tools_3.6.3 igraph_1.2.5 gtable_0.3.0
## [40] glue_1.4.1 RANN_2.6.1 reshape2_1.4.3
## [43] dplyr_0.8.3 Rcpp_1.0.5 vctrs_0.2.0
## [46] gdata_2.18.0 ape_5.3 nlme_3.1-141
## [49] iterators_1.0.12 fpc_2.2-3 gbRd_0.4-11
## [52] lmtest_0.9-37 xfun_0.18 stringr_1.4.0
## [55] lifecycle_0.1.0 irlba_2.3.3 gtools_3.8.1
## [58] DEoptimR_1.0-8 MASS_7.3-53 zoo_1.8-6
## [61] scales_1.1.0 doSNOW_1.0.18 parallel_3.6.3
## [64] yaml_2.2.1 reticulate_1.13 pbapply_1.4-2
## [67] gridExtra_2.3 rpart_4.1-15 segmented_1.0-0
## [70] latticeExtra_0.6-28 stringi_1.4.6 highr_0.8
## [73] foreach_1.4.7 checkmate_1.9.4 caTools_1.17.1.2
## [76] bibtex_0.4.2 Rdpack_0.11-0 SDMTools_1.1-221.1
## [79] rlang_0.4.7 pkgconfig_2.0.3 dtw_1.21-3
## [82] prabclus_2.3-1 bitops_1.0-6 evaluate_0.14
## [85] lattice_0.20-41 ROCR_1.0-7 purrr_0.3.3
## [88] labeling_0.3 htmlwidgets_1.5.1 bit_4.0.4
## [91] tidyselect_0.2.5 plyr_1.8.4 magrittr_1.5
## [94] R6_2.4.1 snow_0.4-3 gplots_3.0.1.1
## [97] Hmisc_4.3-0 pillar_1.4.2 foreign_0.8-72
## [100] withr_2.1.2 fitdistrplus_1.0-14 mixtools_1.1.0
## [103] survival_2.44-1.1 nnet_7.3-14 tsne_0.1-3
## [106] tibble_2.1.3 crayon_1.3.4 hdf5r_1.3.2.9000
## [109] KernSmooth_2.23-15 rmarkdown_2.5 grid_3.6.3
## [112] data.table_1.12.6 metap_1.1 digest_0.6.25
## [115] diptest_0.75-7 tidyr_1.0.0 R.utils_2.9.0
## [118] stats4_3.6.3 munsell_0.5.0
Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France, matthieu.moreau@inserm.fr↩