Load libraries

To define temporally versus spatially regulated genes, we used dorso-pallial apical progenitors scRNAseq data obtained by facs sorting 1H after flashtag injection from :

Telley L, Agirman G et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 2019 May 10;364(6440).

Extract and filter apical progenitors from Telley et al 2019

Fetch Telley et al 2019 dataset from GEO

## --2020-11-30 10:56:18--  https://ftp.ncbi.nlm.nih.gov/geo/series/GSE118nnn/GSE118953/suppl/GSE118953_raw_count.tsv.gz
## Résolution de ftp.ncbi.nlm.nih.gov (ftp.ncbi.nlm.nih.gov)… 130.14.250.11, 2607:f220:41e:250::12, 2607:f220:41e:250::7, ...
## Connexion à ftp.ncbi.nlm.nih.gov (ftp.ncbi.nlm.nih.gov)|130.14.250.11|:443… connecté.
## requête HTTP transmise, en attente de la réponse… 200 OK
## Taille : 19019091 (18M) [application/x-gzip]
## Enregistre : «./Telley2019data/GSE118953_raw_count.tsv.gz»
## 
##      0K .......... .......... .......... .......... ..........  0%  294K 63s
##     50K .......... .......... .......... .......... ..........  0%  604K 47s
##    100K .......... .......... .......... .......... ..........  0% 11,1M 32s
##    150K .......... .......... .......... .......... ..........  1%  640K 31s
##    200K .......... .......... .......... .......... ..........  1% 10,8M 25s
##    250K .......... .......... .......... .......... ..........  1% 11,6M 21s
##    300K .......... .......... .......... .......... ..........  1% 11,9M 18s
##    350K .......... .......... .......... .......... ..........  2%  668K 19s
##    400K .......... .......... .......... .......... ..........  2% 1,32M 19s
##    450K .......... .......... .......... .......... ..........  2% 1,46M 18s
##    500K .......... .......... .......... .......... ..........  2% 3,43M 17s
##    550K .......... .......... .......... .......... ..........  3% 1,38M 16s
##    600K .......... .......... .......... .......... ..........  3% 1,31M 16s
##    650K .......... .......... .......... .......... ..........  3% 4,56M 15s
##    700K .......... .......... .......... .......... ..........  4% 11,2M 14s
##    750K .......... .......... .......... .......... ..........  4%  637K 15s
##    800K .......... .......... .......... .......... ..........  4% 8,91M 14s
##    850K .......... .......... .......... .......... ..........  4% 1,40M 14s
##    900K .......... .......... .......... .......... ..........  5% 1,11M 14s
##    950K .......... .......... .......... .......... ..........  5% 11,8M 13s
##   1000K .......... .......... .......... .......... ..........  5%  725K 14s
##   1050K .......... .......... .......... .......... ..........  5% 4,61M 13s
##   1100K .......... .......... .......... .......... ..........  6% 12,3M 13s
##   1150K .......... .......... .......... .......... ..........  6%  635K 13s
##   1200K .......... .......... .......... .......... ..........  6% 9,15M 13s
##   1250K .......... .......... .......... .......... ..........  6% 11,5M 12s
##   1300K .......... .......... .......... .......... ..........  7%  669K 13s
##   1350K .......... .......... .......... .......... ..........  7% 11,6M 12s
##   1400K .......... .......... .......... .......... ..........  7% 11,4M 12s
##   1450K .......... .......... .......... .......... ..........  8%  666K 12s
##   1500K .......... .......... .......... .......... ..........  8% 11,4M 12s
##   1550K .......... .......... .......... .......... ..........  8% 1,43M 12s
##   1600K .......... .......... .......... .......... ..........  8% 1,05M 12s
##   1650K .......... .......... .......... .......... ..........  9% 11,4M 12s
##   1700K .......... .......... .......... .......... ..........  9%  744K 12s
##   1750K .......... .......... .......... .......... ..........  9% 3,74M 12s
##   1800K .......... .......... .......... .......... ..........  9% 11,9M 11s
##   1850K .......... .......... .......... .......... .......... 10%  753K 12s
##   1900K .......... .......... .......... .......... .......... 10% 3,41M 11s
##   1950K .......... .......... .......... .......... .......... 10% 11,8M 11s
##   2000K .......... .......... .......... .......... .......... 11%  658K 12s
##   2050K .......... .......... .......... .......... .......... 11% 11,5M 11s
##   2100K .......... .......... .......... .......... .......... 11% 11,5M 11s
##   2150K .......... .......... .......... .......... .......... 11%  668K 11s
##   2200K .......... .......... .......... .......... .......... 12% 9,72M 11s
##   2250K .......... .......... .......... .......... .......... 12% 12,3M 11s
##   2300K .......... .......... .......... .......... .......... 12%  717K 11s
##   2350K .......... .......... .......... .......... .......... 12% 4,98M 11s
##   2400K .......... .......... .......... .......... .......... 13% 8,53M 11s
##   2450K .......... .......... .......... .......... .......... 13%  672K 11s
##   2500K .......... .......... .......... .......... .......... 13% 10,5M 11s
##   2550K .......... .......... .......... .......... .......... 13% 1,38M 11s
##   2600K .......... .......... .......... .......... .......... 14% 1,28M 11s
##   2650K .......... .......... .......... .......... .......... 14% 4,84M 10s
##   2700K .......... .......... .......... .......... .......... 14%  730K 11s
##   2750K .......... .......... .......... .......... .......... 15% 9,11M 10s
##   2800K .......... .......... .......... .......... .......... 15% 4,18M 10s
##   2850K .......... .......... .......... .......... .......... 15%  693K 10s
##   2900K .......... .......... .......... .......... .......... 15% 7,68M 10s
##   2950K .......... .......... .......... .......... .......... 16% 8,54M 10s
##   3000K .......... .......... .......... .......... .......... 16%  705K 10s
##   3050K .......... .......... .......... .......... .......... 16% 4,77M 10s
##   3100K .......... .......... .......... .......... .......... 16% 11,3M 10s
##   3150K .......... .......... .......... .......... .......... 17%  703K 10s
##   3200K .......... .......... .......... .......... .......... 17% 5,00M 10s
##   3250K .......... .......... .......... .......... .......... 17%  741K 10s
##   3300K .......... .......... .......... .......... .......... 18% 3,92M 10s
##   3350K .......... .......... .......... .......... .......... 18% 11,6M 10s
##   3400K .......... .......... .......... .......... .......... 18% 11,2M 10s
##   3450K .......... .......... .......... .......... .......... 18%  669K 10s
##   3500K .......... .......... .......... .......... .......... 19% 10,1M 10s
##   3550K .......... .......... .......... .......... .......... 19% 11,5M 9s
##   3600K .......... .......... .......... .......... .......... 19%  640K 10s
##   3650K .......... .......... .......... .......... .......... 19% 12,1M 9s
##   3700K .......... .......... .......... .......... .......... 20% 1,57M 9s
##   3750K .......... .......... .......... .......... .......... 20% 1,00M 9s
##   3800K .......... .......... .......... .......... .......... 20% 11,0M 9s
##   3850K .......... .......... .......... .......... .......... 20% 1,45M 9s
##   3900K .......... .......... .......... .......... .......... 21% 1,05M 9s
##   3950K .......... .......... .......... .......... .......... 21% 12,0M 9s
##   4000K .......... .......... .......... .......... .......... 21%  765K 9s
##   4050K .......... .......... .......... .......... .......... 22% 2,99M 9s
##   4100K .......... .......... .......... .......... .......... 22% 1,51M 9s
##   4150K .......... .......... .......... .......... .......... 22% 1,03M 9s
##   4200K .......... .......... .......... .......... .......... 22% 11,2M 9s
##   4250K .......... .......... .......... .......... .......... 23% 1,39M 9s
##   4300K .......... .......... .......... .......... .......... 23% 1,10M 9s
##   4350K .......... .......... .......... .......... .......... 23% 11,6M 9s
##   4400K .......... .......... .......... .......... .......... 23% 1,36M 9s
##   4450K .......... .......... .......... .......... .......... 24% 1,09M 9s
##   4500K .......... .......... .......... .......... .......... 24% 11,6M 9s
##   4550K .......... .......... .......... .......... .......... 24%  777K 9s
##   4600K .......... .......... .......... .......... .......... 25% 3,32M 9s
##   4650K .......... .......... .......... .......... .......... 25% 11,6M 9s
##   4700K .......... .......... .......... .......... .......... 25%  778K 9s
##   4750K .......... .......... .......... .......... .......... 25% 2,82M 9s
##   4800K .......... .......... .......... .......... .......... 26% 1,44M 9s
##   4850K .......... .......... .......... .......... .......... 26% 1,04M 9s
##   4900K .......... .......... .......... .......... .......... 26% 11,6M 9s
##   4950K .......... .......... .......... .......... .......... 26% 1,42M 9s
##   5000K .......... .......... .......... .......... .......... 27% 1,10M 9s
##   5050K .......... .......... .......... .......... .......... 27% 9,66M 8s
##   5100K .......... .......... .......... .......... .......... 27% 1,44M 8s
##   5150K .......... .......... .......... .......... .......... 27% 1,54M 8s
##   5200K .......... .......... .......... .......... .......... 28% 2,34M 8s
##   5250K .......... .......... .......... .......... .......... 28% 1,52M 8s
##   5300K .......... .......... .......... .......... .......... 28% 1,08M 8s
##   5350K .......... .......... .......... .......... .......... 29% 1,31M 8s
##   5400K .......... .......... .......... .......... .......... 29% 11,1M 8s
##   5450K .......... .......... .......... .......... .......... 29% 1,14M 8s
##   5500K .......... .......... .......... .......... .......... 29% 8,35M 8s
##   5550K .......... .......... .......... .......... .......... 30% 1,39M 8s
##   5600K .......... .......... .......... .......... .......... 30% 1,08M 8s
##   5650K .......... .......... .......... .......... .......... 30% 1,38M 8s
##   5700K .......... .......... .......... .......... .......... 30% 1,44M 8s
##   5750K .......... .......... .......... .......... .......... 31% 2,92M 8s
##   5800K .......... .......... .......... .......... .......... 31% 1,49M 8s
##   5850K .......... .......... .......... .......... .......... 31% 1,04M 8s
##   5900K .......... .......... .......... .......... .......... 32% 11,9M 8s
##   5950K .......... .......... .......... .......... .......... 32% 1,46M 8s
##   6000K .......... .......... .......... .......... .......... 32% 1,03M 8s
##   6050K .......... .......... .......... .......... .......... 32% 10,1M 8s
##   6100K .......... .......... .......... .......... .......... 33% 1,47M 8s
##   6150K .......... .......... .......... .......... .......... 33% 1014K 8s
##   6200K .......... .......... .......... .......... .......... 33% 12,2M 8s
##   6250K .......... .......... .......... .......... .......... 33% 1,58M 8s
##   6300K .......... .......... .......... .......... .......... 34% 1,01M 8s
##   6350K .......... .......... .......... .......... .......... 34% 8,86M 8s
##   6400K .......... .......... .......... .......... .......... 34%  813K 8s
##   6450K .......... .......... .......... .......... .......... 34% 2,63M 7s
##   6500K .......... .......... .......... .......... .......... 35% 10,2M 7s
##   6550K .......... .......... .......... .......... .......... 35%  689K 7s
##   6600K .......... .......... .......... .......... .......... 35% 9,77M 7s
##   6650K .......... .......... .......... .......... .......... 36% 1,39M 7s
##   6700K .......... .......... .......... .......... .......... 36% 1,10M 7s
##   6750K .......... .......... .......... .......... .......... 36% 11,1M 7s
##   6800K .......... .......... .......... .......... .......... 36%  760K 7s
##   6850K .......... .......... .......... .......... .......... 37% 2,75M 7s
##   6900K .......... .......... .......... .......... .......... 37% 11,1M 7s
##   6950K .......... .......... .......... .......... .......... 37%  675K 7s
##   7000K .......... .......... .......... .......... .......... 37% 11,1M 7s
##   7050K .......... .......... .......... .......... .......... 38% 8,48M 7s
##   7100K .......... .......... .......... .......... .......... 38%  681K 7s
##   7150K .......... .......... .......... .......... .......... 38% 10,9M 7s
##   7200K .......... .......... .......... .......... .......... 39% 7,38M 7s
##   7250K .......... .......... .......... .......... .......... 39%  673K 7s
##   7300K .......... .......... .......... .......... .......... 39% 7,05M 7s
##   7350K .......... .......... .......... .......... .......... 39% 11,3M 7s
##   7400K .......... .......... .......... .......... .......... 40%  692K 7s
##   7450K .......... .......... .......... .......... .......... 40% 6,16M 7s
##   7500K .......... .......... .......... .......... .......... 40% 12,0M 7s
##   7550K .......... .......... .......... .......... .......... 40%  698K 7s
##   7600K .......... .......... .......... .......... .......... 41% 5,52M 7s
##   7650K .......... .......... .......... .......... .......... 41% 1,57M 7s
##   7700K .......... .......... .......... .......... .......... 41% 1,05M 7s
##   7750K .......... .......... .......... .......... .......... 41% 8,13M 7s
##   7800K .......... .......... .......... .......... .......... 42% 1,56M 7s
##   7850K .......... .......... .......... .......... .......... 42% 1,06M 7s
##   7900K .......... .......... .......... .......... .......... 42% 7,50M 7s
##   7950K .......... .......... .......... .......... .......... 43% 1,41M 6s
##   8000K .......... .......... .......... .......... .......... 43% 1,11M 6s
##   8050K .......... .......... .......... .......... .......... 43% 7,56M 6s
##   8100K .......... .......... .......... .......... .......... 43%  791K 6s
##   8150K .......... .......... .......... .......... .......... 44% 3,48M 6s
##   8200K .......... .......... .......... .......... .......... 44% 7,59M 6s
##   8250K .......... .......... .......... .......... .......... 44%  661K 6s
##   8300K .......... .......... .......... .......... .......... 44% 11,6M 6s
##   8350K .......... .......... .......... .......... .......... 45% 11,6M 6s
##   8400K .......... .......... .......... .......... .......... 45%  653K 6s
##   8450K .......... .......... .......... .......... .......... 45% 11,6M 6s
##   8500K .......... .......... .......... .......... .......... 46% 1,44M 6s
##   8550K .......... .......... .......... .......... .......... 46% 1,09M 6s
##   8600K .......... .......... .......... .......... .......... 46%  567K 6s
##   8650K .......... .......... .......... .......... .......... 46% 9,93M 6s
##   8700K .......... .......... .......... .......... .......... 47% 12,2M 6s
##   8750K .......... .......... .......... .......... .......... 47% 11,5M 6s
##   8800K .......... .......... .......... .......... .......... 47%  317K 6s
##   8850K .......... .......... .......... .......... .......... 47%  613K 6s
##   8900K .......... .......... .......... .......... .......... 48% 11,8M 6s
##   8950K .......... .......... .......... .......... .......... 48% 11,8M 6s
##   9000K .......... .......... .......... .......... .......... 48%  664K 6s
##   9050K .......... .......... .......... .......... .......... 48% 9,88M 6s
##   9100K .......... .......... .......... .......... .......... 49%  623K 6s
##   9150K .......... .......... .......... .......... .......... 49% 11,7M 6s
##   9200K .......... .......... .......... .......... .......... 49%  621K 6s
##   9250K .......... .......... .......... .......... .......... 50% 11,2M 6s
##   9300K .......... .......... .......... .......... .......... 50% 11,4M 6s
##   9350K .......... .......... .......... .......... .......... 50%  667K 6s
##   9400K .......... .......... .......... .......... .......... 50% 11,0M 6s
##   9450K .......... .......... .......... .......... .......... 51%  641K 6s
##   9500K .......... .......... .......... .......... .......... 51% 12,0M 6s
##   9550K .......... .......... .......... .......... .......... 51% 11,8M 6s
##   9600K .......... .......... .......... .......... .......... 51%  654K 6s
##   9650K .......... .......... .......... .......... .......... 52% 12,0M 6s
##   9700K .......... .......... .......... .......... .......... 52% 11,8M 6s
##   9750K .......... .......... .......... .......... .......... 52%  646K 6s
##   9800K .......... .......... .......... .......... .......... 53% 11,6M 6s
##   9850K .......... .......... .......... .......... .......... 53% 11,5M 5s
##   9900K .......... .......... .......... .......... .......... 53%  665K 5s
##   9950K .......... .......... .......... .......... .......... 53% 11,7M 5s
##  10000K .......... .......... .......... .......... .......... 54%  645K 5s
##  10050K .......... .......... .......... .......... .......... 54% 11,3M 5s
##  10100K .......... .......... .......... .......... .......... 54% 12,2M 5s
##  10150K .......... .......... .......... .......... .......... 54% 11,4M 5s
##  10200K .......... .......... .......... .......... .......... 55%  666K 5s
##  10250K .......... .......... .......... .......... .......... 55% 12,1M 5s
##  10300K .......... .......... .......... .......... .......... 55% 1,53M 5s
##  10350K .......... .......... .......... .......... .......... 55% 1,05M 5s
##  10400K .......... .......... .......... .......... .......... 56% 9,00M 5s
##  10450K .......... .......... .......... .......... .......... 56%  735K 5s
##  10500K .......... .......... .......... .......... .......... 56% 4,51M 5s
##  10550K .......... .......... .......... .......... .......... 57% 11,6M 5s
##  10600K .......... .......... .......... .......... .......... 57%  738K 5s
##  10650K .......... .......... .......... .......... .......... 57% 4,04M 5s
##  10700K .......... .......... .......... .......... .......... 57% 1,37M 5s
##  10750K .......... .......... .......... .......... .......... 58% 1,39M 5s
##  10800K .......... .......... .......... .......... .......... 58% 3,53M 5s
##  10850K .......... .......... .......... .......... .......... 58% 1,39M 5s
##  10900K .......... .......... .......... .......... .......... 58% 1,32M 5s
##  10950K .......... .......... .......... .......... .......... 59% 4,62M 5s
##  11000K .......... .......... .......... .......... .......... 59% 11,3M 5s
##  11050K .......... .......... .......... .......... .......... 59%  722K 5s
##  11100K .......... .......... .......... .......... .......... 60% 4,62M 5s
##  11150K .......... .......... .......... .......... .......... 60% 11,5M 5s
##  11200K .......... .......... .......... .......... .......... 60%  716K 5s
##  11250K .......... .......... .......... .......... .......... 60% 4,72M 5s
##  11300K .......... .......... .......... .......... .......... 61% 1,39M 5s
##  11350K .......... .......... .......... .......... .......... 61% 1,09M 4s
##  11400K .......... .......... .......... .......... .......... 61% 11,9M 4s
##  11450K .......... .......... .......... .......... .......... 61% 11,4M 4s
##  11500K .......... .......... .......... .......... .......... 62%  726K 4s
##  11550K .......... .......... .......... .......... .......... 62% 4,97M 4s
##  11600K .......... .......... .......... .......... .......... 62% 9,31M 4s
##  11650K .......... .......... .......... .......... .......... 62%  662K 4s
##  11700K .......... .......... .......... .......... .......... 63% 12,0M 4s
##  11750K .......... .......... .......... .......... .......... 63% 11,7M 4s
##  11800K .......... .......... .......... .......... .......... 63%  725K 4s
##  11850K .......... .......... .......... .......... .......... 64% 4,91M 4s
##  11900K .......... .......... .......... .......... .......... 64% 11,4M 4s
##  11950K .......... .......... .......... .......... .......... 64%  735K 4s
##  12000K .......... .......... .......... .......... .......... 64% 4,19M 4s
##  12050K .......... .......... .......... .......... .......... 65% 11,5M 4s
##  12100K .......... .......... .......... .......... .......... 65%  732K 4s
##  12150K .......... .......... .......... .......... .......... 65% 4,68M 4s
##  12200K .......... .......... .......... .......... .......... 65% 11,1M 4s
##  12250K .......... .......... .......... .......... .......... 66%  728K 4s
##  12300K .......... .......... .......... .......... .......... 66% 4,87M 4s
##  12350K .......... .......... .......... .......... .......... 66% 11,5M 4s
##  12400K .......... .......... .......... .......... .......... 67%  715K 4s
##  12450K .......... .......... .......... .......... .......... 67% 4,83M 4s
##  12500K .......... .......... .......... .......... .......... 67% 11,3M 4s
##  12550K .......... .......... .......... .......... .......... 67%  733K 4s
##  12600K .......... .......... .......... .......... .......... 68% 4,64M 4s
##  12650K .......... .......... .......... .......... .......... 68% 11,5M 4s
##  12700K .......... .......... .......... .......... .......... 68%  738K 4s
##  12750K .......... .......... .......... .......... .......... 68% 4,22M 4s
##  12800K .......... .......... .......... .......... .......... 69% 8,92M 4s
##  12850K .......... .......... .......... .......... .......... 69%  735K 4s
##  12900K .......... .......... .......... .......... .......... 69% 4,66M 3s
##  12950K .......... .......... .......... .......... .......... 69% 11,5M 3s
##  13000K .......... .......... .......... .......... .......... 70%  727K 3s
##  13050K .......... .......... .......... .......... .......... 70% 4,83M 3s
##  13100K .......... .......... .......... .......... .......... 70% 11,7M 3s
##  13150K .......... .......... .......... .......... .......... 71% 11,9M 3s
##  13200K .......... .......... .......... .......... .......... 71%  653K 3s
##  13250K .......... .......... .......... .......... .......... 71% 11,5M 3s
##  13300K .......... .......... .......... .......... .......... 71% 11,7M 3s
##  13350K .......... .......... .......... .......... .......... 72%  673K 3s
##  13400K .......... .......... .......... .......... .......... 72% 10,6M 3s
##  13450K .......... .......... .......... .......... .......... 72% 12,2M 3s
##  13500K .......... .......... .......... .......... .......... 72%  719K 3s
##  13550K .......... .......... .......... .......... .......... 73% 5,15M 3s
##  13600K .......... .......... .......... .......... .......... 73%  680K 3s
##  13650K .......... .......... .......... .......... .......... 73% 7,56M 3s
##  13700K .......... .......... .......... .......... .......... 74% 11,9M 3s
##  13750K .......... .......... .......... .......... .......... 74%  693K 3s
##  13800K .......... .......... .......... .......... .......... 74% 11,2M 3s
##  13850K .......... .......... .......... .......... .......... 74% 7,58M 3s
##  13900K .......... .......... .......... .......... .......... 75%  693K 3s
##  13950K .......... .......... .......... .......... .......... 75% 3,92M 3s
##  14000K .......... .......... .......... .......... .......... 75% 9,40M 3s
##  14050K .......... .......... .......... .......... .......... 75%  742K 3s
##  14100K .......... .......... .......... .......... .......... 76% 4,28M 3s
##  14150K .......... .......... .......... .......... .......... 76% 12,1M 3s
##  14200K .......... .......... .......... .......... .......... 76% 1,34M 3s
##  14250K .......... .......... .......... .......... .......... 76% 1,15M 3s
##  14300K .......... .......... .......... .......... .......... 77% 12,5M 3s
##  14350K .......... .......... .......... .......... .......... 77% 11,4M 3s
##  14400K .......... .......... .......... .......... .......... 77%  652K 3s
##  14450K .......... .......... .......... .......... .......... 78% 10,2M 2s
##  14500K .......... .......... .......... .......... .......... 78% 1,39M 2s
##  14550K .......... .......... .......... .......... .......... 78% 1,14M 2s
##  14600K .......... .......... .......... .......... .......... 78% 8,61M 2s
##  14650K .......... .......... .......... .......... .......... 79% 11,6M 2s
##  14700K .......... .......... .......... .......... .......... 79%  684K 2s
##  14750K .......... .......... .......... .......... .......... 79% 8,54M 2s
##  14800K .......... .......... .......... .......... .......... 79% 1,15M 2s
##  14850K .......... .......... .......... .......... .......... 80% 1,34M 2s
##  14900K .......... .......... .......... .......... .......... 80% 1,15M 2s
##  14950K .......... .......... .......... .......... .......... 80% 1,37M 2s
##  15000K .......... .......... .......... .......... .......... 81% 8,59M 2s
##  15050K .......... .......... .......... .......... .......... 81% 11,1M 2s
##  15100K .......... .......... .......... .......... .......... 81%  677K 2s
##  15150K .......... .......... .......... .......... .......... 81% 11,7M 2s
##  15200K .......... .......... .......... .......... .......... 82% 7,28M 2s
##  15250K .......... .......... .......... .......... .......... 82%  623K 2s
##  15300K .......... .......... .......... .......... .......... 82% 11,9M 2s
##  15350K .......... .......... .......... .......... .......... 82% 11,8M 2s
##  15400K .......... .......... .......... .......... .......... 83%  665K 2s
##  15450K .......... .......... .......... .......... .......... 83% 11,8M 2s
##  15500K .......... .......... .......... .......... .......... 83% 12,2M 2s
##  15550K .......... .......... .......... .......... .......... 83%  677K 2s
##  15600K .......... .......... .......... .......... .......... 84% 6,58M 2s
##  15650K .......... .......... .......... .......... .......... 84% 11,7M 2s
##  15700K .......... .......... .......... .......... .......... 84%  688K 2s
##  15750K .......... .......... .......... .......... .......... 85% 7,36M 2s
##  15800K .......... .......... .......... .......... .......... 85% 11,5M 2s
##  15850K .......... .......... .......... .......... .......... 85%  767K 2s
##  15900K .......... .......... .......... .......... .......... 85% 3,74M 2s
##  15950K .......... .......... .......... .......... .......... 86% 1,24M 2s
##  16000K .......... .......... .......... .......... .......... 86% 1,54M 2s
##  16050K .......... .......... .......... .......... .......... 86% 3,78M 1s
##  16100K .......... .......... .......... .......... .......... 86% 1,23M 1s
##  16150K .......... .......... .......... .......... .......... 87% 1,48M 1s
##  16200K .......... .......... .......... .......... .......... 87% 4,52M 1s
##  16250K .......... .......... .......... .......... .......... 87%  703K 1s
##  16300K .......... .......... .......... .......... .......... 88% 11,6M 1s
##  16350K .......... .......... .......... .......... .......... 88% 6,50M 1s
##  16400K .......... .......... .......... .......... .......... 88%  684K 1s
##  16450K .......... .......... .......... .......... .......... 88% 5,81M 1s
##  16500K .......... .......... .......... .......... .......... 89% 10,9M 1s
##  16550K .......... .......... .......... .......... .......... 89%  713K 1s
##  16600K .......... .......... .......... .......... .......... 89% 4,76M 1s
##  16650K .......... .......... .......... .......... .......... 89% 11,6M 1s
##  16700K .......... .......... .......... .......... .......... 90% 1,34M 1s
##  16750K .......... .......... .......... .......... .......... 90% 1,13M 1s
##  16800K .......... .......... .......... .......... .......... 90% 8,98M 1s
##  16850K .......... .......... .......... .......... .......... 90%  739K 1s
##  16900K .......... .......... .......... .......... .......... 91% 4,28M 1s
##  16950K .......... .......... .......... .......... .......... 91% 11,6M 1s
##  17000K .......... .......... .......... .......... .......... 91% 1,36M 1s
##  17050K .......... .......... .......... .......... .......... 92% 1,13M 1s
##  17100K .......... .......... .......... .......... .......... 92% 10,1M 1s
##  17150K .......... .......... .......... .......... .......... 92% 1,39M 1s
##  17200K .......... .......... .......... .......... .......... 92% 1,10M 1s
##  17250K .......... .......... .......... .......... .......... 93% 10,3M 1s
##  17300K .......... .......... .......... .......... .......... 93% 1,38M 1s
##  17350K .......... .......... .......... .......... .......... 93% 1,14M 1s
##  17400K .......... .......... .......... .......... .......... 93% 9,93M 1s
##  17450K .......... .......... .......... .......... .......... 94% 1,29M 1s
##  17500K .......... .......... .......... .......... .......... 94% 1,21M 1s
##  17550K .......... .......... .......... .......... .......... 94% 9,53M 1s
##  17600K .......... .......... .......... .......... .......... 95% 1,24M 1s
##  17650K .......... .......... .......... .......... .......... 95% 1,21M 1s
##  17700K .......... .......... .......... .......... .......... 95% 11,3M 0s
##  17750K .......... .......... .......... .......... .......... 95% 1,29M 0s
##  17800K .......... .......... .......... .......... .......... 96% 1,19M 0s
##  17850K .......... .......... .......... .......... .......... 96% 10,3M 0s
##  17900K .......... .......... .......... .......... .......... 96% 1,31M 0s
##  17950K .......... .......... .......... .......... .......... 96% 1,40M 0s
##  18000K .......... .......... .......... .......... .......... 97% 4,08M 0s
##  18050K .......... .......... .......... .......... .......... 97% 1,31M 0s
##  18100K .......... .......... .......... .......... .......... 97% 1,20M 0s
##  18150K .......... .......... .......... .......... .......... 97% 9,65M 0s
##  18200K .......... .......... .......... .......... .......... 98% 1,32M 0s
##  18250K .......... .......... .......... .......... .......... 98% 1,15M 0s
##  18300K .......... .......... .......... .......... .......... 98% 12,1M 0s
##  18350K .......... .......... .......... .......... .......... 99% 1,32M 0s
##  18400K .......... .......... .......... .......... .......... 99% 1,13M 0s
##  18450K .......... .......... .......... .......... .......... 99% 11,6M 0s
##  18500K .......... .......... .......... .......... .......... 99% 1,35M 0s
##  18550K .......... .......... ...                             100%  739K=11s
## 
## 2020-11-30 10:56:30 (1,63 MB/s) - «./Telley2019data/GSE118953_raw_count.tsv.gz» enregistré [19019091/19019091]

Filter genes, normalize counts and scale expression matrix

Explore transcriptional diversity among the progenitors

## [1] 1371

  • Cluster 2 cells express Gad1/2 and Lhx6 and might therefore correspond to cells contaminated with GABAergic neurons transcripts.
  • Cluster 3 gathers only E15 cells expressing Wnt5a, thus likely to be from a medial pallial origin.
  • Cluster 4 contains 6 cells with unclear transcriptional signature
Allen institute Developing Mouse Brain, Wnt5a ISH

We excluded these 3 clusters for downstream analysis

Session Info

## [1] "30 novembre, 2020, 10,59"
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
## LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
## 
## locale:
##  [1] LC_CTYPE=fr_FR.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=fr_FR.UTF-8        LC_COLLATE=fr_FR.UTF-8    
##  [5] LC_MONETARY=fr_FR.UTF-8    LC_MESSAGES=fr_FR.UTF-8   
##  [7] LC_PAPER=fr_FR.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] patchwork_0.0.1 dplyr_0.8.3     Seurat_2.3.4    Matrix_1.2-17  
## [5] cowplot_1.0.0   ggplot2_3.2.1  
## 
## loaded via a namespace (and not attached):
##   [1] Rtsne_0.15          colorspace_1.4-1    class_7.3-17       
##   [4] modeltools_0.2-22   ggridges_0.5.1      mclust_5.4.5       
##   [7] htmlTable_1.13.2    base64enc_0.1-3     rstudioapi_0.11    
##  [10] proxy_0.4-23        farver_2.0.1        npsurv_0.4-0       
##  [13] flexmix_2.3-15      bit64_4.0.2         codetools_0.2-16   
##  [16] splines_3.6.3       R.methodsS3_1.7.1   lsei_1.2-0         
##  [19] robustbase_0.93-5   knitr_1.26          zeallot_0.1.0      
##  [22] jsonlite_1.7.0      Formula_1.2-3       ica_1.0-2          
##  [25] cluster_2.1.0       kernlab_0.9-29      png_0.1-7          
##  [28] R.oo_1.23.0         compiler_3.6.3      httr_1.4.1         
##  [31] backports_1.1.5     assertthat_0.2.1    lazyeval_0.2.2     
##  [34] lars_1.2            acepack_1.4.1       htmltools_0.5.0    
##  [37] tools_3.6.3         igraph_1.2.5        gtable_0.3.0       
##  [40] glue_1.4.1          RANN_2.6.1          reshape2_1.4.3     
##  [43] Rcpp_1.0.5          vctrs_0.2.0         gdata_2.18.0       
##  [46] ape_5.3             nlme_3.1-141        iterators_1.0.12   
##  [49] fpc_2.2-3           gbRd_0.4-11         lmtest_0.9-37      
##  [52] xfun_0.18           stringr_1.4.0       lifecycle_0.1.0    
##  [55] irlba_2.3.3         gtools_3.8.1        DEoptimR_1.0-8     
##  [58] MASS_7.3-53         zoo_1.8-6           scales_1.1.0       
##  [61] doSNOW_1.0.18       parallel_3.6.3      RColorBrewer_1.1-2 
##  [64] yaml_2.2.1          reticulate_1.13     pbapply_1.4-2      
##  [67] gridExtra_2.3       rpart_4.1-15        segmented_1.0-0    
##  [70] latticeExtra_0.6-28 stringi_1.4.6       foreach_1.4.7      
##  [73] checkmate_1.9.4     caTools_1.17.1.2    bibtex_0.4.2       
##  [76] Rdpack_0.11-0       SDMTools_1.1-221.1  rlang_0.4.7        
##  [79] pkgconfig_2.0.3     dtw_1.21-3          prabclus_2.3-1     
##  [82] bitops_1.0-6        evaluate_0.14       lattice_0.20-41    
##  [85] ROCR_1.0-7          purrr_0.3.3         labeling_0.3       
##  [88] htmlwidgets_1.5.1   bit_4.0.4           tidyselect_0.2.5   
##  [91] plyr_1.8.4          magrittr_1.5        R6_2.4.1           
##  [94] snow_0.4-3          gplots_3.0.1.1      Hmisc_4.3-0        
##  [97] pillar_1.4.2        foreign_0.8-72      withr_2.1.2        
## [100] fitdistrplus_1.0-14 mixtools_1.1.0      survival_2.44-1.1  
## [103] nnet_7.3-14         tsne_0.1-3          tibble_2.1.3       
## [106] crayon_1.3.4        hdf5r_1.3.2.9000    KernSmooth_2.23-15 
## [109] rmarkdown_2.5       grid_3.6.3          data.table_1.12.6  
## [112] metap_1.1           digest_0.6.25       diptest_0.75-7     
## [115] tidyr_1.0.0         R.utils_2.9.0       stats4_3.6.3       
## [118] munsell_0.5.0

  1. Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France,

LS0tCnRpdGxlOiAiUHJlcHJvY2Vzc2luZyBUZWxsZXkgZXQgYWwsIDIwMTkgZGF0YXNldCIKYXV0aG9yOgogICAtIE1hdHRoaWV1IE1vcmVhdV5bSW5zdGl0dXRlIG9mIFBzeWNoaWF0cnkgYW5kIE5ldXJvc2NpZW5jZSBvZiBQYXJpcywgSU5TRVJNIFUxMjY2LCA3NTAxNCwgUGFyaXMsIEZyYW5jZSwgbWF0dGhpZXUubW9yZWF1QGluc2VybS5mcl0gWyFbXShodHRwczovL29yY2lkLm9yZy9zaXRlcy9kZWZhdWx0L2ZpbGVzL2ltYWdlcy9vcmNpZF8xNngxNi5wbmcpXShodHRwczovL29yY2lkLm9yZy8wMDAwLTAwMDItMjU5Mi0yMzczKQpkYXRlOiAiYHIgZm9ybWF0KFN5cy50aW1lKCksICclZCAlQiwgJVknKWAiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDogCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMKICAgIGRmX3ByaW50OiB0aWJibGUKICAgIGhpZ2hsaWdodDogaGFkZG9jawogICAgaW5jbHVkZXM6CiAgICAgIGluX2hlYWRlcjogaGVhZGVyLmh0bWwKICAgIHRoZW1lOiBjb3NtbwogICAgdG9jOiB5ZXMKICAgIHRvY19kZXB0aDogNQogICAgdG9jX2Zsb2F0OgogICAgICBjb2xsYXBzZWQ6IHllcwotLS0KCmBgYHtjc3MsIGVjaG89RkFMU0V9CmgxIHsKICBmb250LXNpemU6IDM0cHg7CiAgbWFyZ2luLXRvcDogMnJlbTsKICBtYXJnaW4tYm90dG9tOiAxcmVtOwogIGNvbG9yOiAjZTY0ZDAwOwogIHRleHQtZGVjb3JhdGlvbjogbm9uZTsKfQpoMS50aXRsZSB7CiAgZm9udC1zaXplOiA0MHB4OwogIG1hcmdpbi10b3A6IDJyZW07CiAgbWFyZ2luLWJvdHRvbTogMXJlbTsKICB0ZXh0LWFsaWduOiBjZW50ZXI7CiAgdGV4dC1kZWNvcmF0aW9uOiBub25lOwogIGNvbG9yOiAjMDAwMDAwOwp9CmgyIHsKICBmb250LXNpemU6IDMwcHg7CiAgbWFyZ2luLXRvcDogMnJlbTsKICBtYXJnaW4tYm90dG9tOiAxcmVtOwogIGNvbG9yOiAjMDAwMDAwOwp9CmgzIHsKICBmb250LXNpemU6IDI0cHg7CiAgbWFyZ2luLXRvcDogMnJlbTsKICBtYXJnaW4tYm90dG9tOiAxcmVtOwogIGNvbG9yOiAjMDAwMDAwOwp9Cmg0IHsKICBmb250LXNpemU6IDIwcHg7CiAgbWFyZ2luLXRvcDogMnJlbTsKICBtYXJnaW4tYm90dG9tOiAxcmVtOwogIGNvbG9yOiAjMDAwMDAwOwp9Cmg1IHsKICBmb250LXNpemU6IDE4cHg7CiAgbWFyZ2luLXRvcDogMnJlbTsKICBtYXJnaW4tYm90dG9tOiAxcmVtOwogIGNvbG9yOiAjMDAwMDAwOwp9Cgouc2Nyb2xsLTEwMCB7CiAgbWF4LWhlaWdodDogMjAwcHg7CiAgb3ZlcmZsb3cteTogYXV0bzsKICBiYWNrZ3JvdW5kLWNvbG9yOiBpbmhlcml0Owp9CgpwIHsKICBmb250LXNpemU6IDE2cHg7Cn0KCmBgYAoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgZmlnLmFsaWduID0gJ2NlbnRlcicsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UpCmBgYAoKIyBMb2FkIGxpYnJhcmllcwoKYGBge3J9CiMgTG9hZCBsaWJyYXJ5CmxpYnJhcnkoU2V1cmF0KQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KHBhdGNod29yaykKCiNTZXQgZ2dwbG90IHRoZW1lIGFzIGNsYXNzaWMKdGhlbWVfc2V0KHRoZW1lX2NsYXNzaWMoKSkKYGBgCgpUbyBkZWZpbmUgdGVtcG9yYWxseSB2ZXJzdXMgc3BhdGlhbGx5IHJlZ3VsYXRlZCBnZW5lcywgd2UgdXNlZCAqKmRvcnNvLXBhbGxpYWwgYXBpY2FsIHByb2dlbml0b3JzKiogc2NSTkFzZXEgZGF0YSBvYnRhaW5lZCBieSBmYWNzIHNvcnRpbmcgMUggYWZ0ZXIgZmxhc2h0YWcgaW5qZWN0aW9uIGZyb20gOgoKPiBUZWxsZXkgTCwgQWdpcm1hbiBHICpldCBhbC4qICoqVGVtcG9yYWwgcGF0dGVybmluZyBvZiBhcGljYWwgcHJvZ2VuaXRvcnMgYW5kIHRoZWlyIGRhdWdodGVyIG5ldXJvbnMgaW4gdGhlIGRldmVsb3BpbmcgbmVvY29ydGV4LioqIFtTY2llbmNlIDIwMTkgTWF5IDEwOzM2NCg2NDQwKS5dKGh0dHBzOi8vc2NpZW5jZS5zY2llbmNlbWFnLm9yZy9jb250ZW50LzM2NC82NDQwL2VhYXYyNTIyLmxvbmcpCgojIEV4dHJhY3QgYW5kIGZpbHRlciBhcGljYWwgcHJvZ2VuaXRvcnMgZnJvbSBUZWxsZXkgZXQgYWwgMjAxOQoKIyMgRmV0Y2ggVGVsbGV5IGV0IGFsIDIwMTkgZGF0YXNldCBmcm9tIEdFTwoKYGBge2Jhc2ggY2xhc3Mub3V0cHV0PSJzY3JvbGwtMTAwIn0KbWtkaXIgVGVsbGV5MjAxOWRhdGEKCndnZXQgaHR0cHM6Ly9mdHAubmNiaS5ubG0ubmloLmdvdi9nZW8vc2VyaWVzL0dTRTExOG5ubi9HU0UxMTg5NTMvc3VwcGwvR1NFMTE4OTUzX3Jhd19jb3VudC50c3YuZ3ogLVAgLi9UZWxsZXkyMDE5ZGF0YQpndW56aXAgLi9UZWxsZXkyMDE5ZGF0YS9HU0UxMTg5NTNfcmF3X2NvdW50LnRzdi5negpgYGAKCiMjIEV4dHJhY3QgMUggZmxhc2h0YWcgY2VsbHMgYW5kIHBlcmZvcm0gUUMgZmlsdGVyaW5nCgpgYGB7cn0KIyBMb2FkIHRoZSByYXcgY291bnQgbWF0cml4IGFuZCBleHRyYWN0IDFIIGZsYXNodGFnZ2VkIGNlbGxzCmRhdGEgPC0gcmVhZC50YWJsZSgiLi9UZWxsZXkyMDE5ZGF0YS9HU0UxMTg5NTNfcmF3X2NvdW50LnRzdiIsIGhlYWRlciA9IFQsIHJvdy5uYW1lcyA9IDEpCkFQY2VsbHMgPC0gZ3JlcCgiMUgiLCBjb2xuYW1lcyhkYXRhKSwgdmFsdWUgPSBUKQoKZGF0YSA8LSBkYXRhWyxBUGNlbGxzXQoKIyBJbml0aWFsaXplIHRoZSBTZXVyYXQgb2JqZWN0ClJhdy5kYXRhIDwtIENyZWF0ZVNldXJhdE9iamVjdChyYXcuZGF0YSA9IGRhdGEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtaW4uY2VsbHMgPSAzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWluLmdlbmVzID0gODAwLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHJvamVjdCA9ICJUZWxsZXkyMDE5IikKClJhdy5kYXRhQG1ldGEuZGF0YSRCYXJjb2RlcyA8LSByb3duYW1lcyhSYXcuZGF0YUBtZXRhLmRhdGEpCgpybShkYXRhLEFQY2VsbHMpCmBgYAoKIyMgQ2FsY3VsYXRlIHBlcmNlbnRhZ2Ugb2YgbXQgYW5kIHJpYm8gY291bnRzCgpgYGB7cn0KIyBQZXJjZW50IG9mIG1pdG9jaG9uZHJpYWwgY291bnRzCm1pdG8uZ2VuZXMgPC0gZ3JlcChwYXR0ZXJuID0gIl5tdC0iLCB4ID0gcm93bmFtZXMoeCA9IFJhdy5kYXRhQGRhdGEpLCB2YWx1ZSA9IFRSVUUpCnBlcmNlbnQubWl0byA8LSBNYXRyaXg6OmNvbFN1bXMoUmF3LmRhdGFAcmF3LmRhdGFbbWl0by5nZW5lcywgXSkvTWF0cml4Ojpjb2xTdW1zKFJhdy5kYXRhQHJhdy5kYXRhKQpSYXcuZGF0YSA8LSBBZGRNZXRhRGF0YShvYmplY3QgPSBSYXcuZGF0YSwgbWV0YWRhdGEgPSBwZXJjZW50Lm1pdG8sIGNvbC5uYW1lID0gInBlcmNlbnQubWl0byIpCgojIFBlcmNlbnQgb2YgbWl0b2Nob25kcmlhbCByaWJvc29tYWwKcmliby5nZW5lcyA8LSBncmVwKHBhdHRlcm4gPSAiKF5ScGx8XlJwc3xeTXJwKSIsIHggPSByb3duYW1lcyh4ID0gUmF3LmRhdGFAZGF0YSksIHZhbHVlID0gVFJVRSkKcGVyY2VudC5yaWJvIDwtIE1hdHJpeDo6Y29sU3VtcyhSYXcuZGF0YUByYXcuZGF0YVtyaWJvLmdlbmVzLCBdKS9NYXRyaXg6OmNvbFN1bXMoUmF3LmRhdGFAcmF3LmRhdGEpClJhdy5kYXRhIDwtIEFkZE1ldGFEYXRhKG9iamVjdCA9IFJhdy5kYXRhLCBtZXRhZGF0YSA9IHBlcmNlbnQucmlibywgY29sLm5hbWUgPSAicGVyY2VudC5yaWJvIikKYGBgCgpgYGB7cn0KIyBWaW9saW4gcGxvdCAKVmxuUGxvdChvYmplY3QgPSBSYXcuZGF0YSwgZmVhdHVyZXMucGxvdCA9IGMoIm5HZW5lIiwiblVNSSIsICJwZXJjZW50Lm1pdG8iLCAicGVyY2VudC5yaWJvIiksCiAgICAgICAgbkNvbCA9IDIsIGNvbHMudXNlID0gYygiI2JkZDhlZiIsICIjNmRiOGUyIiwgIiMzNTdlYmMiLCAiIzFjNDg5NiIpKQpgYGAKCkFjY29yZGluZyB0byBhdXRob3JzJyBpbmZvcm1hdGlvbnMgZ2l2ZW4gaW4gdGhlIFtzdXBwbGVtZW50YXJ5IG1hdGVyaWFsc10oaHR0cHM6Ly9zY2llbmNlLnNjaWVuY2VtYWcub3JnL2NvbnRlbnQvc2NpL3N1cHBsLzIwMTkvMDUvMDgvMzY0LjY0NDAuZWFhdjI1MjIuREMxL2FhdjI1MjJfVGVsbGV5X1NNLnBkZiksIHRoaXMgZGF0YXNldCBjb250YWlucyBvbmx5IFFDIHBhc3NlZCBjZWxscy4KCj4gIkNlbGxzIGV4cHJlc3NpbmcgPCAxMDAwIGdlbmVzIG9yID4gMTclIG9mIG1pdG9jaG9uZHJpYWwgOCBnZW5lcyB3ZXJlIGV4Y2x1ZGVkLiBBZnRlciB0aGlzIHN0ZXAsIDIsNzU2IGNlbGxzIHJlbWFpbmVkIGZvciBhbmFseXNpcyAoRlQgKzEgaDogKipFMTI6IDE4OSoqIGNlbGxzLCAqKkUxMzogMjA3KiosICoqRTE0OiAxMzQqKiwgICoqRTE1OiAzMDEqKiBbLi4uXSIKCmBgYHtyfQp0YWJsZShSYXcuZGF0YUBpZGVudCkKYGBgCgojIyBGaWx0ZXIgZ2VuZXMsIG5vcm1hbGl6ZSBjb3VudHMgYW5kIHNjYWxlIGV4cHJlc3Npb24gbWF0cml4CgpgYGB7cn0KIyBGaWx0ZXIgZ2VuZXMgZXhwcmVzc2VkIGJ5IGxlc3MgdGhhbiAzIGNlbGxzCm51bS5jZWxscyA8LSBNYXRyaXg6OnJvd1N1bXMoUmF3LmRhdGFAZGF0YSA+IDApCmdlbmVzLnVzZSA8LSBuYW1lcyh4ID0gbnVtLmNlbGxzW3doaWNoKHggPSBudW0uY2VsbHMgPj0gMTApXSkKUmF3LmRhdGFAcmF3LmRhdGEgPC0gUmF3LmRhdGFAcmF3LmRhdGFbZ2VuZXMudXNlLCBdClJhdy5kYXRhQGRhdGEgPC0gUmF3LmRhdGFAZGF0YVtnZW5lcy51c2UsIF0KYGBgCgpgYGB7cn0KIyBsb2dOb3JtYWxpemVkIHRoZSBnZW5lIGV4cHJlc3Npb24gbWF0cml4ClJhdy5kYXRhIDwtIE5vcm1hbGl6ZURhdGEob2JqZWN0ID0gUmF3LmRhdGEsCiAgICAgICAgICAgICAgICAgICAgICAgICBub3JtYWxpemF0aW9uLm1ldGhvZCA9ICJMb2dOb3JtYWxpemUiLCAKICAgICAgICAgICAgICAgICAgICAgICAgIHNjYWxlLmZhY3RvciA9IHJvdW5kKG1lZGlhbihSYXcuZGF0YUBtZXRhLmRhdGEkblVNSSkpLAogICAgICAgICAgICAgICAgICAgICAgICAgZGlzcGxheS5wcm9ncmVzcyA9IEYpCmBgYAoKYGBge3J9CiMgQXNzaWduIENlbGwtQ3ljbGUgU2NvcmVzCnMuZ2VuZXMgPC0gYygiTWNtNSIsICJQY25hIiwgIlR5bTUiLCAiRmVuMSIsICJNY20yIiwgIk1jbTQiLCAiUnJtMSIsICJVbmciLCAiR2luczIiLCAiTWNtNiIsICJDZGNhNyIsICJEdGwiLCAiUHJpbTEiLCAiVWhyZjEiLCAiTWxmMWlwIiwgIkhlbGxzIiwgIlJmYzIiLCAiUmFwMiIsICJOYXNwIiwgIlJhZDUxYXAxIiwgIkdtbm4iLCAiV2RyNzYiLCAiU2xicCIsICJDY25lMiIsICJVYnI3IiwgIlBvbGQzIiwgIk1zaDIiLCAiQXRhZDIiLCAiUmFkNTEiLCAiUnJtMiIsICJDZGM0NSIsICJDZGM2IiwgIkV4bzEiLCAiVGlwaW4iLCAiRHNjYzEiLCAiQmxtIiwgIiBDYXNwOGFwMiIsICJVc3AxIiwgIkNsc3BuIiwgIlBvbGExIiwgIkNoYWYxYiIsICJCcmlwMSIsICJFMmY4IikKZzJtLmdlbmVzIDwtIGMoIkhtZ2IyIiwgIkRkazEiLCJOdXNhcDEiLCAiVWJlMmMiLCAiQmlyYzUiLCAiVHB4MiIsICJUb3AyYSIsICJOZGM4MCIsICJDa3MyIiwgIk51ZjIiLCAiQ2tzMWIiLCAiTWtpNjciLCAiVG1wbyIsICIgQ2VucGsiLCAiVGFjYzMiLCAiRmFtNjRhIiwgIlNtYzQiLCAiQ2NuYjIiLCAiQ2thcDJsIiwgIkNrYXAyIiwgIkF1cmtiIiwgIkJ1YjEiLCAiS2lmMTEiLCAiQW5wMzJlIiwgIlR1YmI0YiIsICJHdHNlMSIsICJraWYyMGIiLCAiSGp1cnAiLCAiQ2RjYTMiLCAiSG4xIiwgIkNkYzIwIiwgIlR0ayIsICJDZGMyNWMiLCAia2lmMmMiLCAiUmFuZ2FwMSIsICJOY2FwZDIiLCAiRGxnYXA1IiwgIkNkY2EyIiwgIkNkY2E4IiwgIkVjdDIiLCAiS2lmMjMiLCAiSG1tciIsICJBdXJrYSIsICJQc3JjMSIsICJBbmxuIiwgIkxiciIsICJDa2FwNSIsICJDZW5wZSIsICJDdGNmIiwgIk5lazIiLCAiRzJlMyIsICJHYXMybDMiLCAiQ2J4NSIsICJDZW5wYSIpCgpSYXcuZGF0YSA8LSBDZWxsQ3ljbGVTY29yaW5nKG9iamVjdCA9IFJhdy5kYXRhLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgcy5nZW5lcyA9IHMuZ2VuZXMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBnMm0uZ2VuZXMgPSBnMm0uZ2VuZXMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZXQuaWRlbnQgPSBGKQpgYGAKCmBgYHtyfQojIFdlIGRlY2lkZSB0byByZWdyZXNzIG91dCB0aGUgZWZmZWN0IGNlbGwgY3ljbGUgIApSYXcuZGF0YUBtZXRhLmRhdGEkQ0MuRGlmZmVyZW5jZSA8LSBSYXcuZGF0YUBtZXRhLmRhdGEkUy5TY29yZSAtIFJhdy5kYXRhQG1ldGEuZGF0YSRHMk0uU2NvcmUKUmF3LmRhdGEgPC0gU2NhbGVEYXRhKG9iamVjdCA9IFJhdy5kYXRhLAogICAgICAgICAgICAgICAgICAgICB2YXJzLnRvLnJlZ3Jlc3MgPSBjKCJDQy5EaWZmZXJlbmNlIiwicGVyY2VudC5taXRvIiwibkdlbmUiLCAiblVNSSIpLAogICAgICAgICAgICAgICAgICAgICBkaXNwbGF5LnByb2dyZXNzID0gRikKYGBgCgojIEV4cGxvcmUgdHJhbnNjcmlwdGlvbmFsIGRpdmVyc2l0eSBhbW9uZyB0aGUgcHJvZ2VuaXRvcnMKCmBgYHtyfQojIEZpbmQgbW9zdCB2YXJpYWJsZSBnZW5lcwpSYXcuZGF0YSAgPC0gRmluZFZhcmlhYmxlR2VuZXMob2JqZWN0ID0gUmF3LmRhdGEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZWFuLmZ1bmN0aW9uID0gRXhwTWVhbiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpc3BlcnNpb24uZnVuY3Rpb24gPSBMb2dWTVIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB4Lmxvdy5jdXRvZmYgPSAwLjAxMjUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB4LmhpZ2guY3V0b2ZmID0gMywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgeS5jdXRvZmYgPSAxLCBkby5wbG90ID0gRikKCmxlbmd0aChSYXcuZGF0YUB2YXIuZ2VuZXMpCmBgYAoKYGBge3J9CiMgUnVuIFBDQQpSYXcuZGF0YSA8LSBSdW5QQ0Eob2JqZWN0ID0gUmF3LmRhdGEsCiAgICAgICAgICAgICAgICAgIHBjcy5jb21wdXRlID0gMTUsCiAgICAgICAgICAgICAgICAgIGRvLnByaW50ID1GKQoKUENIZWF0bWFwKG9iamVjdCA9IFJhdy5kYXRhLCBwYy51c2UgPSAxOjIsIGNlbGxzLnVzZSA9IDI1MCwgZG8uYmFsYW5jZWQgPSBUUlVFLCBsYWJlbC5jb2x1bW5zID0gRkFMU0UpCmBgYAogCmBgYHtyfQojIFBlcmZvcm0gYnJvYWQgZ3JhcGgtYmFzZWQgY2x1c3RlcmluZwpSYXcuZGF0YSA8LSBGaW5kQ2x1c3RlcnMoUmF3LmRhdGEsCiAgICAgICAgICAgICAgICAgICAgICAgIHJlZHVjdGlvbi50eXBlID0gInBjYSIsCiAgICAgICAgICAgICAgICAgICAgICAgIGRpbXMudXNlID0gMToxMCwKICAgICAgICAgICAgICAgICAgICAgICAgay5wYXJhbSA9IDIwLAogICAgICAgICAgICAgICAgICAgICAgICBhbGdvcml0aG0gPSAxLCAKICAgICAgICAgICAgICAgICAgICAgICAgcmVzb2x1dGlvbiA9IDAuNiwKICAgICAgICAgICAgICAgICAgICAgICAgcHJpbnQub3V0cHV0ID0gRiwKICAgICAgICAgICAgICAgICAgICAgICAgcmFuZG9tLnNlZWQgPTEyMzQpCgpSYXcuZGF0YSA8LSBSdW5VTUFQKFJhdy5kYXRhLCBkaW1zLnVzZSA9IDE6MTAsIG5fbmVpZ2hib3JzID0gMjAsIG1heC5kaW0gPSAyKQpgYGAKCmBgYHtyIGZpZy5kaW09Yyg4LCAzKX0KcDEgPC0gRGltUGxvdChSYXcuZGF0YSwKICAgICAgICAgICAgICByZWR1Y3Rpb24udXNlID0gInVtYXAiLCAKICAgICAgICAgICAgICBkaW0uMSA9IDEsCiAgICAgICAgICAgICAgZGltLjIgPSAyLAogICAgICAgICAgICAgIGRvLmxhYmVsPVQsCiAgICAgICAgICAgICAgbGFiZWwuc2l6ZSA9IDQsCiAgICAgICAgICAgICAgbm8ubGVnZW5kID0gVCwKICAgICAgICAgICAgICBwdC5zaXplID0gMiwKICAgICAgICAgICAgICBjb2xzLnVzZSA9IGMoIiNlYzc1NmQiLCAiI2M3NzNhNyIsICIjNzI5M2M4IiwgIiNiNzlmMGIiLCAiIzA0NmM5YSIpLAogICAgICAgICAgICAgIGRvLnJldHVybiA9IFQpCgpwMiA8LSBEaW1QbG90KFJhdy5kYXRhLAogICAgICAgICAgICAgIHJlZHVjdGlvbi51c2UgPSAidW1hcCIsCiAgICAgICAgICAgICAgZ3JvdXAuYnkgPSJvcmlnLmlkZW50IiwgCiAgICAgICAgICAgICAgZGltLjEgPSAxLAogICAgICAgICAgICAgIGRpbS4yID0gMiwKICAgICAgICAgICAgICBkby5sYWJlbD1ULAogICAgICAgICAgICAgIGxhYmVsLnNpemUgPSA0LAogICAgICAgICAgICAgIG5vLmxlZ2VuZCA9IFQsCiAgICAgICAgICAgICAgcHQuc2l6ZSA9IDIsCiAgICAgICAgICAgICAgY29scy51c2UgPSBjKCIjYmRkOGVmIiwgIiM2ZGI4ZTIiLCAiIzM1N2ViYyIsICIjMWM0ODk2IiksCiAgICAgICAgICAgICAgZG8ucmV0dXJuID0gVCkKCnAxICsgcDIKYGBgCgpgYGB7ciBmaWcuZGltPWMoOSwgNil9CiMgRmluZCBhbGwgbWFya2VycyBiZXR3ZWVuIGNsdXN0ZXJzIApBbGxtYXJrZXJzIDwtIEZpbmRBbGxNYXJrZXJzKG9iamVjdCA9IFJhdy5kYXRhLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1pbi5wY3QgPSAwLjMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbG9nZmMudGhyZXNob2xkID0gMC42LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHByaW50LmJhciA9IEYsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25seS5wb3MgPSBUKQoKVG9wbWFya2VycyA8LSBBbGxtYXJrZXJzICU+JSBncm91cF9ieShjbHVzdGVyKSAlPiUgdG9wX24oMTAsIGF2Z19sb2dGQykKRG9IZWF0bWFwKG9iamVjdCA9IFJhdy5kYXRhLAogICAgICAgICAgZ2VuZXMudXNlID0gVG9wbWFya2VycyRnZW5lLAogICAgICAgICAgdXNlLnNjYWxlZCA9IFRSVUUsCiAgICAgICAgICBzbGltLmNvbC5sYWJlbCA9IFRSVUUsCiAgICAgICAgICByZW1vdmUua2V5ID0gVCwKICAgICAgICAgIGNvbC5sb3cgPSAiIzQ1NzViNCIsCiAgICAgICAgICBjb2wubWlkID0gIiMxYTFhMWEiLCAKICAgICAgICAgIGNvbC5oaWdoID0gIiNmZGFjNjEiLCAKICAgICAgICAgIGNleC5yb3cgPTgpCmBgYAoKLSBDbHVzdGVyIDIgY2VsbHMgZXhwcmVzcyAqR2FkMS8yKiBhbmQgKkxoeDYqIGFuZCBtaWdodCB0aGVyZWZvcmUgY29ycmVzcG9uZCB0byBjZWxscyBjb250YW1pbmF0ZWQgd2l0aCBHQUJBZXJnaWMgbmV1cm9ucyB0cmFuc2NyaXB0cy4gCi0gQ2x1c3RlciAzIGdhdGhlcnMgb25seSBFMTUgY2VsbHMgZXhwcmVzc2luZyAqV250NWEqLCB0aHVzIGxpa2VseSB0byBiZSBmcm9tIGEgbWVkaWFsIHBhbGxpYWwgb3JpZ2luLiAKLSBDbHVzdGVyIDQgY29udGFpbnMgNiBjZWxscyB3aXRoIHVuY2xlYXIgdHJhbnNjcmlwdGlvbmFsIHNpZ25hdHVyZQoKPGNlbnRlcj4KIVtBbGxlbiBpbnN0aXR1dGUgRGV2ZWxvcGluZyBNb3VzZSBCcmFpbiwgV250NWEgSVNIXSguL1dudDVhX0UxNS5wbmcpeyNpZCAuY2xhc3Mgd2lkdGg9NTAlIGhlaWdodD01MCV9CjxjZW50ZXI+CgoKV2UgZXhjbHVkZWQgdGhlc2UgMyBjbHVzdGVycyBmb3IgZG93bnN0cmVhbSBhbmFseXNpcwoKIyBSZXRhaW4gb25seSBkb3Jzby1wYWxsaWFsIGRlcml2ZWQgQVAgZm9ybSB0aGUgZGF0YXNldAoKYGBge3J9CkZpbHRlcmVkLmRhdGEgPC0gU3Vic2V0RGF0YShSYXcuZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlkZW50LnVzZSA9IGMoMCwxKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN1YnNldC5yYXcgPSBULAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZG8uY2xlYW4gPSBGKQoKdGFibGUoRmlsdGVyZWQuZGF0YUBtZXRhLmRhdGEkb3JpZy5pZGVudCkKYGBgCgpgYGB7cn0KRGltUGxvdChGaWx0ZXJlZC5kYXRhLAogICAgICAgIHJlZHVjdGlvbi51c2UgPSAidW1hcCIsIAogICAgICAgIGRpbS4xID0gMSwKICAgICAgICBkaW0uMiA9IDIsCiAgICAgICAgZG8ubGFiZWw9VCwKICAgICAgICBsYWJlbC5zaXplID0gNCwKICAgICAgICBuby5sZWdlbmQgPSBULAogICAgICAgIHB0LnNpemUgPSAyLAogICAgICAgIGNvbHMudXNlID0gYygiI2VjNzU2ZCIsICIjYzc3M2E3IiwgIiM3MjkzYzgiLCAiI2I3OWYwYiIsICIjMDQ2YzlhIiksCiAgICAgICAgZG8ucmV0dXJuID0gVCkKYGBgCgoKYGBge3J9CiMgRmlsdGVyIGdlbmVzIGV4cHJlc3NlZCBieSBsZXNzIHRoYW4gMyBjZWxscwpudW0uY2VsbHMgPC0gTWF0cml4Ojpyb3dTdW1zKEZpbHRlcmVkLmRhdGFAZGF0YSA+IDApCmdlbmVzLnVzZSA8LSBuYW1lcyh4ID0gbnVtLmNlbGxzW3doaWNoKHggPSBudW0uY2VsbHMgPj0gMTApXSkKRmlsdGVyZWQuZGF0YUByYXcuZGF0YSA8LSBGaWx0ZXJlZC5kYXRhQHJhdy5kYXRhW2dlbmVzLnVzZSwgXQpGaWx0ZXJlZC5kYXRhQGRhdGEgPC0gRmlsdGVyZWQuZGF0YUBkYXRhW2dlbmVzLnVzZSwgXQpgYGAKCmBgYHtyfQojIGxvZ05vcm1hbGl6ZWQgdGhlIGdlbmUgZXhwcmVzc2lvbiBtYXRyaXgKRmlsdGVyZWQuZGF0YSA8LSBOb3JtYWxpemVEYXRhKG9iamVjdCA9IEZpbHRlcmVkLmRhdGEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtYWxpemF0aW9uLm1ldGhvZCA9ICJMb2dOb3JtYWxpemUiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNjYWxlLmZhY3RvciA9IHJvdW5kKG1lZGlhbihGaWx0ZXJlZC5kYXRhQG1ldGEuZGF0YSRuVU1JKSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkaXNwbGF5LnByb2dyZXNzID0gRikKYGBgCgpgYGB7cn0KRmlsdGVyZWQuZGF0YSA8LSBTY2FsZURhdGEob2JqZWN0ID0gRmlsdGVyZWQuZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFycy50by5yZWdyZXNzID0gYygiQ0MuRGlmZmVyZW5jZSIsInBlcmNlbnQubWl0byIsIm5HZW5lIiwgIm5VTUkiKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgZGlzcGxheS5wcm9ncmVzcyA9IEYpCmBgYAoKYGBge3J9CnNhdmVSRFMoRmlsdGVyZWQuZGF0YSwgIi4vVGVsbGV5MjAxOWRhdGEvVGVsbGV5MjAxOS5SRFMiKQpgYGAKCgojIFNlc3Npb24gSW5mbwpgYGB7cn0KI2RhdGUKZm9ybWF0KFN5cy50aW1lKCksICIlZCAlQiwgJVksICVILCVNIikKCiNQYWNrYWdlcyB1c2VkCnNlc3Npb25JbmZvKCkKYGBg