# Load library
library(Seurat)
library(dplyr)
library(patchwork)
#Set ggplot theme as classic
theme_set(theme_classic())
To define temporally versus spatially regulated genes, we used dorso-pallial apical progenitors scRNAseq data obtained by facs sorting 1H after flashtag injection from :
Telley L, Agirman G et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 2019 May 10;364(6440).
mkdir Telley2019data
wget https://ftp.ncbi.nlm.nih.gov/geo/series/GSE118nnn/GSE118953/suppl/GSE118953_raw_count.tsv.gz -P ./Telley2019data
gunzip ./Telley2019data/GSE118953_raw_count.tsv.gz
## --2020-11-30 10:56:18-- https://ftp.ncbi.nlm.nih.gov/geo/series/GSE118nnn/GSE118953/suppl/GSE118953_raw_count.tsv.gz
## Résolution de ftp.ncbi.nlm.nih.gov (ftp.ncbi.nlm.nih.gov)… 130.14.250.11, 2607:f220:41e:250::12, 2607:f220:41e:250::7, ...
## Connexion à ftp.ncbi.nlm.nih.gov (ftp.ncbi.nlm.nih.gov)|130.14.250.11|:443… connecté.
## requête HTTP transmise, en attente de la réponse… 200 OK
## Taille : 19019091 (18M) [application/x-gzip]
## Enregistre : «./Telley2019data/GSE118953_raw_count.tsv.gz»
##
## 0K .......... .......... .......... .......... .......... 0% 294K 63s
## 50K .......... .......... .......... .......... .......... 0% 604K 47s
## 100K .......... .......... .......... .......... .......... 0% 11,1M 32s
## 150K .......... .......... .......... .......... .......... 1% 640K 31s
## 200K .......... .......... .......... .......... .......... 1% 10,8M 25s
## 250K .......... .......... .......... .......... .......... 1% 11,6M 21s
## 300K .......... .......... .......... .......... .......... 1% 11,9M 18s
## 350K .......... .......... .......... .......... .......... 2% 668K 19s
## 400K .......... .......... .......... .......... .......... 2% 1,32M 19s
## 450K .......... .......... .......... .......... .......... 2% 1,46M 18s
## 500K .......... .......... .......... .......... .......... 2% 3,43M 17s
## 550K .......... .......... .......... .......... .......... 3% 1,38M 16s
## 600K .......... .......... .......... .......... .......... 3% 1,31M 16s
## 650K .......... .......... .......... .......... .......... 3% 4,56M 15s
## 700K .......... .......... .......... .......... .......... 4% 11,2M 14s
## 750K .......... .......... .......... .......... .......... 4% 637K 15s
## 800K .......... .......... .......... .......... .......... 4% 8,91M 14s
## 850K .......... .......... .......... .......... .......... 4% 1,40M 14s
## 900K .......... .......... .......... .......... .......... 5% 1,11M 14s
## 950K .......... .......... .......... .......... .......... 5% 11,8M 13s
## 1000K .......... .......... .......... .......... .......... 5% 725K 14s
## 1050K .......... .......... .......... .......... .......... 5% 4,61M 13s
## 1100K .......... .......... .......... .......... .......... 6% 12,3M 13s
## 1150K .......... .......... .......... .......... .......... 6% 635K 13s
## 1200K .......... .......... .......... .......... .......... 6% 9,15M 13s
## 1250K .......... .......... .......... .......... .......... 6% 11,5M 12s
## 1300K .......... .......... .......... .......... .......... 7% 669K 13s
## 1350K .......... .......... .......... .......... .......... 7% 11,6M 12s
## 1400K .......... .......... .......... .......... .......... 7% 11,4M 12s
## 1450K .......... .......... .......... .......... .......... 8% 666K 12s
## 1500K .......... .......... .......... .......... .......... 8% 11,4M 12s
## 1550K .......... .......... .......... .......... .......... 8% 1,43M 12s
## 1600K .......... .......... .......... .......... .......... 8% 1,05M 12s
## 1650K .......... .......... .......... .......... .......... 9% 11,4M 12s
## 1700K .......... .......... .......... .......... .......... 9% 744K 12s
## 1750K .......... .......... .......... .......... .......... 9% 3,74M 12s
## 1800K .......... .......... .......... .......... .......... 9% 11,9M 11s
## 1850K .......... .......... .......... .......... .......... 10% 753K 12s
## 1900K .......... .......... .......... .......... .......... 10% 3,41M 11s
## 1950K .......... .......... .......... .......... .......... 10% 11,8M 11s
## 2000K .......... .......... .......... .......... .......... 11% 658K 12s
## 2050K .......... .......... .......... .......... .......... 11% 11,5M 11s
## 2100K .......... .......... .......... .......... .......... 11% 11,5M 11s
## 2150K .......... .......... .......... .......... .......... 11% 668K 11s
## 2200K .......... .......... .......... .......... .......... 12% 9,72M 11s
## 2250K .......... .......... .......... .......... .......... 12% 12,3M 11s
## 2300K .......... .......... .......... .......... .......... 12% 717K 11s
## 2350K .......... .......... .......... .......... .......... 12% 4,98M 11s
## 2400K .......... .......... .......... .......... .......... 13% 8,53M 11s
## 2450K .......... .......... .......... .......... .......... 13% 672K 11s
## 2500K .......... .......... .......... .......... .......... 13% 10,5M 11s
## 2550K .......... .......... .......... .......... .......... 13% 1,38M 11s
## 2600K .......... .......... .......... .......... .......... 14% 1,28M 11s
## 2650K .......... .......... .......... .......... .......... 14% 4,84M 10s
## 2700K .......... .......... .......... .......... .......... 14% 730K 11s
## 2750K .......... .......... .......... .......... .......... 15% 9,11M 10s
## 2800K .......... .......... .......... .......... .......... 15% 4,18M 10s
## 2850K .......... .......... .......... .......... .......... 15% 693K 10s
## 2900K .......... .......... .......... .......... .......... 15% 7,68M 10s
## 2950K .......... .......... .......... .......... .......... 16% 8,54M 10s
## 3000K .......... .......... .......... .......... .......... 16% 705K 10s
## 3050K .......... .......... .......... .......... .......... 16% 4,77M 10s
## 3100K .......... .......... .......... .......... .......... 16% 11,3M 10s
## 3150K .......... .......... .......... .......... .......... 17% 703K 10s
## 3200K .......... .......... .......... .......... .......... 17% 5,00M 10s
## 3250K .......... .......... .......... .......... .......... 17% 741K 10s
## 3300K .......... .......... .......... .......... .......... 18% 3,92M 10s
## 3350K .......... .......... .......... .......... .......... 18% 11,6M 10s
## 3400K .......... .......... .......... .......... .......... 18% 11,2M 10s
## 3450K .......... .......... .......... .......... .......... 18% 669K 10s
## 3500K .......... .......... .......... .......... .......... 19% 10,1M 10s
## 3550K .......... .......... .......... .......... .......... 19% 11,5M 9s
## 3600K .......... .......... .......... .......... .......... 19% 640K 10s
## 3650K .......... .......... .......... .......... .......... 19% 12,1M 9s
## 3700K .......... .......... .......... .......... .......... 20% 1,57M 9s
## 3750K .......... .......... .......... .......... .......... 20% 1,00M 9s
## 3800K .......... .......... .......... .......... .......... 20% 11,0M 9s
## 3850K .......... .......... .......... .......... .......... 20% 1,45M 9s
## 3900K .......... .......... .......... .......... .......... 21% 1,05M 9s
## 3950K .......... .......... .......... .......... .......... 21% 12,0M 9s
## 4000K .......... .......... .......... .......... .......... 21% 765K 9s
## 4050K .......... .......... .......... .......... .......... 22% 2,99M 9s
## 4100K .......... .......... .......... .......... .......... 22% 1,51M 9s
## 4150K .......... .......... .......... .......... .......... 22% 1,03M 9s
## 4200K .......... .......... .......... .......... .......... 22% 11,2M 9s
## 4250K .......... .......... .......... .......... .......... 23% 1,39M 9s
## 4300K .......... .......... .......... .......... .......... 23% 1,10M 9s
## 4350K .......... .......... .......... .......... .......... 23% 11,6M 9s
## 4400K .......... .......... .......... .......... .......... 23% 1,36M 9s
## 4450K .......... .......... .......... .......... .......... 24% 1,09M 9s
## 4500K .......... .......... .......... .......... .......... 24% 11,6M 9s
## 4550K .......... .......... .......... .......... .......... 24% 777K 9s
## 4600K .......... .......... .......... .......... .......... 25% 3,32M 9s
## 4650K .......... .......... .......... .......... .......... 25% 11,6M 9s
## 4700K .......... .......... .......... .......... .......... 25% 778K 9s
## 4750K .......... .......... .......... .......... .......... 25% 2,82M 9s
## 4800K .......... .......... .......... .......... .......... 26% 1,44M 9s
## 4850K .......... .......... .......... .......... .......... 26% 1,04M 9s
## 4900K .......... .......... .......... .......... .......... 26% 11,6M 9s
## 4950K .......... .......... .......... .......... .......... 26% 1,42M 9s
## 5000K .......... .......... .......... .......... .......... 27% 1,10M 9s
## 5050K .......... .......... .......... .......... .......... 27% 9,66M 8s
## 5100K .......... .......... .......... .......... .......... 27% 1,44M 8s
## 5150K .......... .......... .......... .......... .......... 27% 1,54M 8s
## 5200K .......... .......... .......... .......... .......... 28% 2,34M 8s
## 5250K .......... .......... .......... .......... .......... 28% 1,52M 8s
## 5300K .......... .......... .......... .......... .......... 28% 1,08M 8s
## 5350K .......... .......... .......... .......... .......... 29% 1,31M 8s
## 5400K .......... .......... .......... .......... .......... 29% 11,1M 8s
## 5450K .......... .......... .......... .......... .......... 29% 1,14M 8s
## 5500K .......... .......... .......... .......... .......... 29% 8,35M 8s
## 5550K .......... .......... .......... .......... .......... 30% 1,39M 8s
## 5600K .......... .......... .......... .......... .......... 30% 1,08M 8s
## 5650K .......... .......... .......... .......... .......... 30% 1,38M 8s
## 5700K .......... .......... .......... .......... .......... 30% 1,44M 8s
## 5750K .......... .......... .......... .......... .......... 31% 2,92M 8s
## 5800K .......... .......... .......... .......... .......... 31% 1,49M 8s
## 5850K .......... .......... .......... .......... .......... 31% 1,04M 8s
## 5900K .......... .......... .......... .......... .......... 32% 11,9M 8s
## 5950K .......... .......... .......... .......... .......... 32% 1,46M 8s
## 6000K .......... .......... .......... .......... .......... 32% 1,03M 8s
## 6050K .......... .......... .......... .......... .......... 32% 10,1M 8s
## 6100K .......... .......... .......... .......... .......... 33% 1,47M 8s
## 6150K .......... .......... .......... .......... .......... 33% 1014K 8s
## 6200K .......... .......... .......... .......... .......... 33% 12,2M 8s
## 6250K .......... .......... .......... .......... .......... 33% 1,58M 8s
## 6300K .......... .......... .......... .......... .......... 34% 1,01M 8s
## 6350K .......... .......... .......... .......... .......... 34% 8,86M 8s
## 6400K .......... .......... .......... .......... .......... 34% 813K 8s
## 6450K .......... .......... .......... .......... .......... 34% 2,63M 7s
## 6500K .......... .......... .......... .......... .......... 35% 10,2M 7s
## 6550K .......... .......... .......... .......... .......... 35% 689K 7s
## 6600K .......... .......... .......... .......... .......... 35% 9,77M 7s
## 6650K .......... .......... .......... .......... .......... 36% 1,39M 7s
## 6700K .......... .......... .......... .......... .......... 36% 1,10M 7s
## 6750K .......... .......... .......... .......... .......... 36% 11,1M 7s
## 6800K .......... .......... .......... .......... .......... 36% 760K 7s
## 6850K .......... .......... .......... .......... .......... 37% 2,75M 7s
## 6900K .......... .......... .......... .......... .......... 37% 11,1M 7s
## 6950K .......... .......... .......... .......... .......... 37% 675K 7s
## 7000K .......... .......... .......... .......... .......... 37% 11,1M 7s
## 7050K .......... .......... .......... .......... .......... 38% 8,48M 7s
## 7100K .......... .......... .......... .......... .......... 38% 681K 7s
## 7150K .......... .......... .......... .......... .......... 38% 10,9M 7s
## 7200K .......... .......... .......... .......... .......... 39% 7,38M 7s
## 7250K .......... .......... .......... .......... .......... 39% 673K 7s
## 7300K .......... .......... .......... .......... .......... 39% 7,05M 7s
## 7350K .......... .......... .......... .......... .......... 39% 11,3M 7s
## 7400K .......... .......... .......... .......... .......... 40% 692K 7s
## 7450K .......... .......... .......... .......... .......... 40% 6,16M 7s
## 7500K .......... .......... .......... .......... .......... 40% 12,0M 7s
## 7550K .......... .......... .......... .......... .......... 40% 698K 7s
## 7600K .......... .......... .......... .......... .......... 41% 5,52M 7s
## 7650K .......... .......... .......... .......... .......... 41% 1,57M 7s
## 7700K .......... .......... .......... .......... .......... 41% 1,05M 7s
## 7750K .......... .......... .......... .......... .......... 41% 8,13M 7s
## 7800K .......... .......... .......... .......... .......... 42% 1,56M 7s
## 7850K .......... .......... .......... .......... .......... 42% 1,06M 7s
## 7900K .......... .......... .......... .......... .......... 42% 7,50M 7s
## 7950K .......... .......... .......... .......... .......... 43% 1,41M 6s
## 8000K .......... .......... .......... .......... .......... 43% 1,11M 6s
## 8050K .......... .......... .......... .......... .......... 43% 7,56M 6s
## 8100K .......... .......... .......... .......... .......... 43% 791K 6s
## 8150K .......... .......... .......... .......... .......... 44% 3,48M 6s
## 8200K .......... .......... .......... .......... .......... 44% 7,59M 6s
## 8250K .......... .......... .......... .......... .......... 44% 661K 6s
## 8300K .......... .......... .......... .......... .......... 44% 11,6M 6s
## 8350K .......... .......... .......... .......... .......... 45% 11,6M 6s
## 8400K .......... .......... .......... .......... .......... 45% 653K 6s
## 8450K .......... .......... .......... .......... .......... 45% 11,6M 6s
## 8500K .......... .......... .......... .......... .......... 46% 1,44M 6s
## 8550K .......... .......... .......... .......... .......... 46% 1,09M 6s
## 8600K .......... .......... .......... .......... .......... 46% 567K 6s
## 8650K .......... .......... .......... .......... .......... 46% 9,93M 6s
## 8700K .......... .......... .......... .......... .......... 47% 12,2M 6s
## 8750K .......... .......... .......... .......... .......... 47% 11,5M 6s
## 8800K .......... .......... .......... .......... .......... 47% 317K 6s
## 8850K .......... .......... .......... .......... .......... 47% 613K 6s
## 8900K .......... .......... .......... .......... .......... 48% 11,8M 6s
## 8950K .......... .......... .......... .......... .......... 48% 11,8M 6s
## 9000K .......... .......... .......... .......... .......... 48% 664K 6s
## 9050K .......... .......... .......... .......... .......... 48% 9,88M 6s
## 9100K .......... .......... .......... .......... .......... 49% 623K 6s
## 9150K .......... .......... .......... .......... .......... 49% 11,7M 6s
## 9200K .......... .......... .......... .......... .......... 49% 621K 6s
## 9250K .......... .......... .......... .......... .......... 50% 11,2M 6s
## 9300K .......... .......... .......... .......... .......... 50% 11,4M 6s
## 9350K .......... .......... .......... .......... .......... 50% 667K 6s
## 9400K .......... .......... .......... .......... .......... 50% 11,0M 6s
## 9450K .......... .......... .......... .......... .......... 51% 641K 6s
## 9500K .......... .......... .......... .......... .......... 51% 12,0M 6s
## 9550K .......... .......... .......... .......... .......... 51% 11,8M 6s
## 9600K .......... .......... .......... .......... .......... 51% 654K 6s
## 9650K .......... .......... .......... .......... .......... 52% 12,0M 6s
## 9700K .......... .......... .......... .......... .......... 52% 11,8M 6s
## 9750K .......... .......... .......... .......... .......... 52% 646K 6s
## 9800K .......... .......... .......... .......... .......... 53% 11,6M 6s
## 9850K .......... .......... .......... .......... .......... 53% 11,5M 5s
## 9900K .......... .......... .......... .......... .......... 53% 665K 5s
## 9950K .......... .......... .......... .......... .......... 53% 11,7M 5s
## 10000K .......... .......... .......... .......... .......... 54% 645K 5s
## 10050K .......... .......... .......... .......... .......... 54% 11,3M 5s
## 10100K .......... .......... .......... .......... .......... 54% 12,2M 5s
## 10150K .......... .......... .......... .......... .......... 54% 11,4M 5s
## 10200K .......... .......... .......... .......... .......... 55% 666K 5s
## 10250K .......... .......... .......... .......... .......... 55% 12,1M 5s
## 10300K .......... .......... .......... .......... .......... 55% 1,53M 5s
## 10350K .......... .......... .......... .......... .......... 55% 1,05M 5s
## 10400K .......... .......... .......... .......... .......... 56% 9,00M 5s
## 10450K .......... .......... .......... .......... .......... 56% 735K 5s
## 10500K .......... .......... .......... .......... .......... 56% 4,51M 5s
## 10550K .......... .......... .......... .......... .......... 57% 11,6M 5s
## 10600K .......... .......... .......... .......... .......... 57% 738K 5s
## 10650K .......... .......... .......... .......... .......... 57% 4,04M 5s
## 10700K .......... .......... .......... .......... .......... 57% 1,37M 5s
## 10750K .......... .......... .......... .......... .......... 58% 1,39M 5s
## 10800K .......... .......... .......... .......... .......... 58% 3,53M 5s
## 10850K .......... .......... .......... .......... .......... 58% 1,39M 5s
## 10900K .......... .......... .......... .......... .......... 58% 1,32M 5s
## 10950K .......... .......... .......... .......... .......... 59% 4,62M 5s
## 11000K .......... .......... .......... .......... .......... 59% 11,3M 5s
## 11050K .......... .......... .......... .......... .......... 59% 722K 5s
## 11100K .......... .......... .......... .......... .......... 60% 4,62M 5s
## 11150K .......... .......... .......... .......... .......... 60% 11,5M 5s
## 11200K .......... .......... .......... .......... .......... 60% 716K 5s
## 11250K .......... .......... .......... .......... .......... 60% 4,72M 5s
## 11300K .......... .......... .......... .......... .......... 61% 1,39M 5s
## 11350K .......... .......... .......... .......... .......... 61% 1,09M 4s
## 11400K .......... .......... .......... .......... .......... 61% 11,9M 4s
## 11450K .......... .......... .......... .......... .......... 61% 11,4M 4s
## 11500K .......... .......... .......... .......... .......... 62% 726K 4s
## 11550K .......... .......... .......... .......... .......... 62% 4,97M 4s
## 11600K .......... .......... .......... .......... .......... 62% 9,31M 4s
## 11650K .......... .......... .......... .......... .......... 62% 662K 4s
## 11700K .......... .......... .......... .......... .......... 63% 12,0M 4s
## 11750K .......... .......... .......... .......... .......... 63% 11,7M 4s
## 11800K .......... .......... .......... .......... .......... 63% 725K 4s
## 11850K .......... .......... .......... .......... .......... 64% 4,91M 4s
## 11900K .......... .......... .......... .......... .......... 64% 11,4M 4s
## 11950K .......... .......... .......... .......... .......... 64% 735K 4s
## 12000K .......... .......... .......... .......... .......... 64% 4,19M 4s
## 12050K .......... .......... .......... .......... .......... 65% 11,5M 4s
## 12100K .......... .......... .......... .......... .......... 65% 732K 4s
## 12150K .......... .......... .......... .......... .......... 65% 4,68M 4s
## 12200K .......... .......... .......... .......... .......... 65% 11,1M 4s
## 12250K .......... .......... .......... .......... .......... 66% 728K 4s
## 12300K .......... .......... .......... .......... .......... 66% 4,87M 4s
## 12350K .......... .......... .......... .......... .......... 66% 11,5M 4s
## 12400K .......... .......... .......... .......... .......... 67% 715K 4s
## 12450K .......... .......... .......... .......... .......... 67% 4,83M 4s
## 12500K .......... .......... .......... .......... .......... 67% 11,3M 4s
## 12550K .......... .......... .......... .......... .......... 67% 733K 4s
## 12600K .......... .......... .......... .......... .......... 68% 4,64M 4s
## 12650K .......... .......... .......... .......... .......... 68% 11,5M 4s
## 12700K .......... .......... .......... .......... .......... 68% 738K 4s
## 12750K .......... .......... .......... .......... .......... 68% 4,22M 4s
## 12800K .......... .......... .......... .......... .......... 69% 8,92M 4s
## 12850K .......... .......... .......... .......... .......... 69% 735K 4s
## 12900K .......... .......... .......... .......... .......... 69% 4,66M 3s
## 12950K .......... .......... .......... .......... .......... 69% 11,5M 3s
## 13000K .......... .......... .......... .......... .......... 70% 727K 3s
## 13050K .......... .......... .......... .......... .......... 70% 4,83M 3s
## 13100K .......... .......... .......... .......... .......... 70% 11,7M 3s
## 13150K .......... .......... .......... .......... .......... 71% 11,9M 3s
## 13200K .......... .......... .......... .......... .......... 71% 653K 3s
## 13250K .......... .......... .......... .......... .......... 71% 11,5M 3s
## 13300K .......... .......... .......... .......... .......... 71% 11,7M 3s
## 13350K .......... .......... .......... .......... .......... 72% 673K 3s
## 13400K .......... .......... .......... .......... .......... 72% 10,6M 3s
## 13450K .......... .......... .......... .......... .......... 72% 12,2M 3s
## 13500K .......... .......... .......... .......... .......... 72% 719K 3s
## 13550K .......... .......... .......... .......... .......... 73% 5,15M 3s
## 13600K .......... .......... .......... .......... .......... 73% 680K 3s
## 13650K .......... .......... .......... .......... .......... 73% 7,56M 3s
## 13700K .......... .......... .......... .......... .......... 74% 11,9M 3s
## 13750K .......... .......... .......... .......... .......... 74% 693K 3s
## 13800K .......... .......... .......... .......... .......... 74% 11,2M 3s
## 13850K .......... .......... .......... .......... .......... 74% 7,58M 3s
## 13900K .......... .......... .......... .......... .......... 75% 693K 3s
## 13950K .......... .......... .......... .......... .......... 75% 3,92M 3s
## 14000K .......... .......... .......... .......... .......... 75% 9,40M 3s
## 14050K .......... .......... .......... .......... .......... 75% 742K 3s
## 14100K .......... .......... .......... .......... .......... 76% 4,28M 3s
## 14150K .......... .......... .......... .......... .......... 76% 12,1M 3s
## 14200K .......... .......... .......... .......... .......... 76% 1,34M 3s
## 14250K .......... .......... .......... .......... .......... 76% 1,15M 3s
## 14300K .......... .......... .......... .......... .......... 77% 12,5M 3s
## 14350K .......... .......... .......... .......... .......... 77% 11,4M 3s
## 14400K .......... .......... .......... .......... .......... 77% 652K 3s
## 14450K .......... .......... .......... .......... .......... 78% 10,2M 2s
## 14500K .......... .......... .......... .......... .......... 78% 1,39M 2s
## 14550K .......... .......... .......... .......... .......... 78% 1,14M 2s
## 14600K .......... .......... .......... .......... .......... 78% 8,61M 2s
## 14650K .......... .......... .......... .......... .......... 79% 11,6M 2s
## 14700K .......... .......... .......... .......... .......... 79% 684K 2s
## 14750K .......... .......... .......... .......... .......... 79% 8,54M 2s
## 14800K .......... .......... .......... .......... .......... 79% 1,15M 2s
## 14850K .......... .......... .......... .......... .......... 80% 1,34M 2s
## 14900K .......... .......... .......... .......... .......... 80% 1,15M 2s
## 14950K .......... .......... .......... .......... .......... 80% 1,37M 2s
## 15000K .......... .......... .......... .......... .......... 81% 8,59M 2s
## 15050K .......... .......... .......... .......... .......... 81% 11,1M 2s
## 15100K .......... .......... .......... .......... .......... 81% 677K 2s
## 15150K .......... .......... .......... .......... .......... 81% 11,7M 2s
## 15200K .......... .......... .......... .......... .......... 82% 7,28M 2s
## 15250K .......... .......... .......... .......... .......... 82% 623K 2s
## 15300K .......... .......... .......... .......... .......... 82% 11,9M 2s
## 15350K .......... .......... .......... .......... .......... 82% 11,8M 2s
## 15400K .......... .......... .......... .......... .......... 83% 665K 2s
## 15450K .......... .......... .......... .......... .......... 83% 11,8M 2s
## 15500K .......... .......... .......... .......... .......... 83% 12,2M 2s
## 15550K .......... .......... .......... .......... .......... 83% 677K 2s
## 15600K .......... .......... .......... .......... .......... 84% 6,58M 2s
## 15650K .......... .......... .......... .......... .......... 84% 11,7M 2s
## 15700K .......... .......... .......... .......... .......... 84% 688K 2s
## 15750K .......... .......... .......... .......... .......... 85% 7,36M 2s
## 15800K .......... .......... .......... .......... .......... 85% 11,5M 2s
## 15850K .......... .......... .......... .......... .......... 85% 767K 2s
## 15900K .......... .......... .......... .......... .......... 85% 3,74M 2s
## 15950K .......... .......... .......... .......... .......... 86% 1,24M 2s
## 16000K .......... .......... .......... .......... .......... 86% 1,54M 2s
## 16050K .......... .......... .......... .......... .......... 86% 3,78M 1s
## 16100K .......... .......... .......... .......... .......... 86% 1,23M 1s
## 16150K .......... .......... .......... .......... .......... 87% 1,48M 1s
## 16200K .......... .......... .......... .......... .......... 87% 4,52M 1s
## 16250K .......... .......... .......... .......... .......... 87% 703K 1s
## 16300K .......... .......... .......... .......... .......... 88% 11,6M 1s
## 16350K .......... .......... .......... .......... .......... 88% 6,50M 1s
## 16400K .......... .......... .......... .......... .......... 88% 684K 1s
## 16450K .......... .......... .......... .......... .......... 88% 5,81M 1s
## 16500K .......... .......... .......... .......... .......... 89% 10,9M 1s
## 16550K .......... .......... .......... .......... .......... 89% 713K 1s
## 16600K .......... .......... .......... .......... .......... 89% 4,76M 1s
## 16650K .......... .......... .......... .......... .......... 89% 11,6M 1s
## 16700K .......... .......... .......... .......... .......... 90% 1,34M 1s
## 16750K .......... .......... .......... .......... .......... 90% 1,13M 1s
## 16800K .......... .......... .......... .......... .......... 90% 8,98M 1s
## 16850K .......... .......... .......... .......... .......... 90% 739K 1s
## 16900K .......... .......... .......... .......... .......... 91% 4,28M 1s
## 16950K .......... .......... .......... .......... .......... 91% 11,6M 1s
## 17000K .......... .......... .......... .......... .......... 91% 1,36M 1s
## 17050K .......... .......... .......... .......... .......... 92% 1,13M 1s
## 17100K .......... .......... .......... .......... .......... 92% 10,1M 1s
## 17150K .......... .......... .......... .......... .......... 92% 1,39M 1s
## 17200K .......... .......... .......... .......... .......... 92% 1,10M 1s
## 17250K .......... .......... .......... .......... .......... 93% 10,3M 1s
## 17300K .......... .......... .......... .......... .......... 93% 1,38M 1s
## 17350K .......... .......... .......... .......... .......... 93% 1,14M 1s
## 17400K .......... .......... .......... .......... .......... 93% 9,93M 1s
## 17450K .......... .......... .......... .......... .......... 94% 1,29M 1s
## 17500K .......... .......... .......... .......... .......... 94% 1,21M 1s
## 17550K .......... .......... .......... .......... .......... 94% 9,53M 1s
## 17600K .......... .......... .......... .......... .......... 95% 1,24M 1s
## 17650K .......... .......... .......... .......... .......... 95% 1,21M 1s
## 17700K .......... .......... .......... .......... .......... 95% 11,3M 0s
## 17750K .......... .......... .......... .......... .......... 95% 1,29M 0s
## 17800K .......... .......... .......... .......... .......... 96% 1,19M 0s
## 17850K .......... .......... .......... .......... .......... 96% 10,3M 0s
## 17900K .......... .......... .......... .......... .......... 96% 1,31M 0s
## 17950K .......... .......... .......... .......... .......... 96% 1,40M 0s
## 18000K .......... .......... .......... .......... .......... 97% 4,08M 0s
## 18050K .......... .......... .......... .......... .......... 97% 1,31M 0s
## 18100K .......... .......... .......... .......... .......... 97% 1,20M 0s
## 18150K .......... .......... .......... .......... .......... 97% 9,65M 0s
## 18200K .......... .......... .......... .......... .......... 98% 1,32M 0s
## 18250K .......... .......... .......... .......... .......... 98% 1,15M 0s
## 18300K .......... .......... .......... .......... .......... 98% 12,1M 0s
## 18350K .......... .......... .......... .......... .......... 99% 1,32M 0s
## 18400K .......... .......... .......... .......... .......... 99% 1,13M 0s
## 18450K .......... .......... .......... .......... .......... 99% 11,6M 0s
## 18500K .......... .......... .......... .......... .......... 99% 1,35M 0s
## 18550K .......... .......... ... 100% 739K=11s
##
## 2020-11-30 10:56:30 (1,63 MB/s) - «./Telley2019data/GSE118953_raw_count.tsv.gz» enregistré [19019091/19019091]
# Load the raw count matrix and extract 1H flashtagged cells
data <- read.table("./Telley2019data/GSE118953_raw_count.tsv", header = T, row.names = 1)
APcells <- grep("1H", colnames(data), value = T)
data <- data[,APcells]
# Initialize the Seurat object
Raw.data <- CreateSeuratObject(raw.data = data,
min.cells = 3,
min.genes = 800,
project = "Telley2019")
Raw.data@meta.data$Barcodes <- rownames(Raw.data@meta.data)
rm(data,APcells)
# Percent of mitochondrial counts
mito.genes <- grep(pattern = "^mt-", x = rownames(x = Raw.data@data), value = TRUE)
percent.mito <- Matrix::colSums(Raw.data@raw.data[mito.genes, ])/Matrix::colSums(Raw.data@raw.data)
Raw.data <- AddMetaData(object = Raw.data, metadata = percent.mito, col.name = "percent.mito")
# Percent of mitochondrial ribosomal
ribo.genes <- grep(pattern = "(^Rpl|^Rps|^Mrp)", x = rownames(x = Raw.data@data), value = TRUE)
percent.ribo <- Matrix::colSums(Raw.data@raw.data[ribo.genes, ])/Matrix::colSums(Raw.data@raw.data)
Raw.data <- AddMetaData(object = Raw.data, metadata = percent.ribo, col.name = "percent.ribo")
# Violin plot
VlnPlot(object = Raw.data, features.plot = c("nGene","nUMI", "percent.mito", "percent.ribo"),
nCol = 2, cols.use = c("#bdd8ef", "#6db8e2", "#357ebc", "#1c4896"))
According to authors’ informations given in the supplementary materials, this dataset contains only QC passed cells.
“Cells expressing < 1000 genes or > 17% of mitochondrial 8 genes were excluded. After this step, 2,756 cells remained for analysis (FT +1 h: E12: 189 cells, E13: 207, E14: 134, E15: 301 […]”
##
## E12.1H E13.1H E14.1H E15.1H
## 189 207 134 301
# Filter genes expressed by less than 3 cells
num.cells <- Matrix::rowSums(Raw.data@data > 0)
genes.use <- names(x = num.cells[which(x = num.cells >= 10)])
Raw.data@raw.data <- Raw.data@raw.data[genes.use, ]
Raw.data@data <- Raw.data@data[genes.use, ]
# logNormalized the gene expression matrix
Raw.data <- NormalizeData(object = Raw.data,
normalization.method = "LogNormalize",
scale.factor = round(median(Raw.data@meta.data$nUMI)),
display.progress = F)
# Assign Cell-Cycle Scores
s.genes <- c("Mcm5", "Pcna", "Tym5", "Fen1", "Mcm2", "Mcm4", "Rrm1", "Ung", "Gins2", "Mcm6", "Cdca7", "Dtl", "Prim1", "Uhrf1", "Mlf1ip", "Hells", "Rfc2", "Rap2", "Nasp", "Rad51ap1", "Gmnn", "Wdr76", "Slbp", "Ccne2", "Ubr7", "Pold3", "Msh2", "Atad2", "Rad51", "Rrm2", "Cdc45", "Cdc6", "Exo1", "Tipin", "Dscc1", "Blm", " Casp8ap2", "Usp1", "Clspn", "Pola1", "Chaf1b", "Brip1", "E2f8")
g2m.genes <- c("Hmgb2", "Ddk1","Nusap1", "Ube2c", "Birc5", "Tpx2", "Top2a", "Ndc80", "Cks2", "Nuf2", "Cks1b", "Mki67", "Tmpo", " Cenpk", "Tacc3", "Fam64a", "Smc4", "Ccnb2", "Ckap2l", "Ckap2", "Aurkb", "Bub1", "Kif11", "Anp32e", "Tubb4b", "Gtse1", "kif20b", "Hjurp", "Cdca3", "Hn1", "Cdc20", "Ttk", "Cdc25c", "kif2c", "Rangap1", "Ncapd2", "Dlgap5", "Cdca2", "Cdca8", "Ect2", "Kif23", "Hmmr", "Aurka", "Psrc1", "Anln", "Lbr", "Ckap5", "Cenpe", "Ctcf", "Nek2", "G2e3", "Gas2l3", "Cbx5", "Cenpa")
Raw.data <- CellCycleScoring(object = Raw.data,
s.genes = s.genes,
g2m.genes = g2m.genes,
set.ident = F)
# Find most variable genes
Raw.data <- FindVariableGenes(object = Raw.data,
mean.function = ExpMean,
dispersion.function = LogVMR,
x.low.cutoff = 0.0125,
x.high.cutoff = 3,
y.cutoff = 1, do.plot = F)
length(Raw.data@var.genes)
## [1] 1371
# Run PCA
Raw.data <- RunPCA(object = Raw.data,
pcs.compute = 15,
do.print =F)
PCHeatmap(object = Raw.data, pc.use = 1:2, cells.use = 250, do.balanced = TRUE, label.columns = FALSE)
# Perform broad graph-based clustering
Raw.data <- FindClusters(Raw.data,
reduction.type = "pca",
dims.use = 1:10,
k.param = 20,
algorithm = 1,
resolution = 0.6,
print.output = F,
random.seed =1234)
Raw.data <- RunUMAP(Raw.data, dims.use = 1:10, n_neighbors = 20, max.dim = 2)
p1 <- DimPlot(Raw.data,
reduction.use = "umap",
dim.1 = 1,
dim.2 = 2,
do.label=T,
label.size = 4,
no.legend = T,
pt.size = 2,
cols.use = c("#ec756d", "#c773a7", "#7293c8", "#b79f0b", "#046c9a"),
do.return = T)
p2 <- DimPlot(Raw.data,
reduction.use = "umap",
group.by ="orig.ident",
dim.1 = 1,
dim.2 = 2,
do.label=T,
label.size = 4,
no.legend = T,
pt.size = 2,
cols.use = c("#bdd8ef", "#6db8e2", "#357ebc", "#1c4896"),
do.return = T)
p1 + p2
# Find all markers between clusters
Allmarkers <- FindAllMarkers(object = Raw.data,
min.pct = 0.3,
logfc.threshold = 0.6,
print.bar = F,
only.pos = T)
Topmarkers <- Allmarkers %>% group_by(cluster) %>% top_n(10, avg_logFC)
DoHeatmap(object = Raw.data,
genes.use = Topmarkers$gene,
use.scaled = TRUE,
slim.col.label = TRUE,
remove.key = T,
col.low = "#4575b4",
col.mid = "#1a1a1a",
col.high = "#fdac61",
cex.row =8)
We excluded these 3 clusters for downstream analysis
Filtered.data <- SubsetData(Raw.data,
ident.use = c(0,1),
subset.raw = T,
do.clean = F)
table(Filtered.data@meta.data$orig.ident)
##
## E12.1H E13.1H E14.1H E15.1H
## 178 202 124 221
DimPlot(Filtered.data,
reduction.use = "umap",
dim.1 = 1,
dim.2 = 2,
do.label=T,
label.size = 4,
no.legend = T,
pt.size = 2,
cols.use = c("#ec756d", "#c773a7", "#7293c8", "#b79f0b", "#046c9a"),
do.return = T)
# Filter genes expressed by less than 3 cells
num.cells <- Matrix::rowSums(Filtered.data@data > 0)
genes.use <- names(x = num.cells[which(x = num.cells >= 10)])
Filtered.data@raw.data <- Filtered.data@raw.data[genes.use, ]
Filtered.data@data <- Filtered.data@data[genes.use, ]
# logNormalized the gene expression matrix
Filtered.data <- NormalizeData(object = Filtered.data,
normalization.method = "LogNormalize",
scale.factor = round(median(Filtered.data@meta.data$nUMI)),
display.progress = F)
## [1] "30 novembre, 2020, 10,59"
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
## LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
##
## locale:
## [1] LC_CTYPE=fr_FR.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=fr_FR.UTF-8 LC_COLLATE=fr_FR.UTF-8
## [5] LC_MONETARY=fr_FR.UTF-8 LC_MESSAGES=fr_FR.UTF-8
## [7] LC_PAPER=fr_FR.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] patchwork_0.0.1 dplyr_0.8.3 Seurat_2.3.4 Matrix_1.2-17
## [5] cowplot_1.0.0 ggplot2_3.2.1
##
## loaded via a namespace (and not attached):
## [1] Rtsne_0.15 colorspace_1.4-1 class_7.3-17
## [4] modeltools_0.2-22 ggridges_0.5.1 mclust_5.4.5
## [7] htmlTable_1.13.2 base64enc_0.1-3 rstudioapi_0.11
## [10] proxy_0.4-23 farver_2.0.1 npsurv_0.4-0
## [13] flexmix_2.3-15 bit64_4.0.2 codetools_0.2-16
## [16] splines_3.6.3 R.methodsS3_1.7.1 lsei_1.2-0
## [19] robustbase_0.93-5 knitr_1.26 zeallot_0.1.0
## [22] jsonlite_1.7.0 Formula_1.2-3 ica_1.0-2
## [25] cluster_2.1.0 kernlab_0.9-29 png_0.1-7
## [28] R.oo_1.23.0 compiler_3.6.3 httr_1.4.1
## [31] backports_1.1.5 assertthat_0.2.1 lazyeval_0.2.2
## [34] lars_1.2 acepack_1.4.1 htmltools_0.5.0
## [37] tools_3.6.3 igraph_1.2.5 gtable_0.3.0
## [40] glue_1.4.1 RANN_2.6.1 reshape2_1.4.3
## [43] Rcpp_1.0.5 vctrs_0.2.0 gdata_2.18.0
## [46] ape_5.3 nlme_3.1-141 iterators_1.0.12
## [49] fpc_2.2-3 gbRd_0.4-11 lmtest_0.9-37
## [52] xfun_0.18 stringr_1.4.0 lifecycle_0.1.0
## [55] irlba_2.3.3 gtools_3.8.1 DEoptimR_1.0-8
## [58] MASS_7.3-53 zoo_1.8-6 scales_1.1.0
## [61] doSNOW_1.0.18 parallel_3.6.3 RColorBrewer_1.1-2
## [64] yaml_2.2.1 reticulate_1.13 pbapply_1.4-2
## [67] gridExtra_2.3 rpart_4.1-15 segmented_1.0-0
## [70] latticeExtra_0.6-28 stringi_1.4.6 foreach_1.4.7
## [73] checkmate_1.9.4 caTools_1.17.1.2 bibtex_0.4.2
## [76] Rdpack_0.11-0 SDMTools_1.1-221.1 rlang_0.4.7
## [79] pkgconfig_2.0.3 dtw_1.21-3 prabclus_2.3-1
## [82] bitops_1.0-6 evaluate_0.14 lattice_0.20-41
## [85] ROCR_1.0-7 purrr_0.3.3 labeling_0.3
## [88] htmlwidgets_1.5.1 bit_4.0.4 tidyselect_0.2.5
## [91] plyr_1.8.4 magrittr_1.5 R6_2.4.1
## [94] snow_0.4-3 gplots_3.0.1.1 Hmisc_4.3-0
## [97] pillar_1.4.2 foreign_0.8-72 withr_2.1.2
## [100] fitdistrplus_1.0-14 mixtools_1.1.0 survival_2.44-1.1
## [103] nnet_7.3-14 tsne_0.1-3 tibble_2.1.3
## [106] crayon_1.3.4 hdf5r_1.3.2.9000 KernSmooth_2.23-15
## [109] rmarkdown_2.5 grid_3.6.3 data.table_1.12.6
## [112] metap_1.1 digest_0.6.25 diptest_0.75-7
## [115] tidyr_1.0.0 R.utils_2.9.0 stats4_3.6.3
## [118] munsell_0.5.0
Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France, matthieu.moreau@inserm.fr↩